These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27557101)

  • 1. Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling.
    Robinson BS; Berger TW; Song D
    Neural Comput; 2016 Nov; 28(11):2320-2351. PubMed ID: 27557101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Volterra kernel model identification of spike-timing-dependent plasticity from simulated spiking activity.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6585-8. PubMed ID: 25571505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5578-81. PubMed ID: 24111001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking.
    Muller L; Brette R; Gutkin B
    Front Comput Neurosci; 2011; 5():45. PubMed ID: 22110429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Model for R(t) Elements and R(t) -Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples.
    Ivans RC; Dahl SG; Cantley KD
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4206-4216. PubMed ID: 31869804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point.
    Burkitt AN; Meffin H; Grayden DB
    Neural Comput; 2004 May; 16(5):885-940. PubMed ID: 15070504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
    Bono J; Clopath C
    Nat Commun; 2017 Sep; 8(1):706. PubMed ID: 28951585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
    Song D; Robinson BS; Granacki JJ; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():714-7. PubMed ID: 25570058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.