These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27557108)

  • 1. Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces.
    Zhou Z; Sun N; Wu S; Li YQ; Wang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):510. PubMed ID: 27557108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains.
    Shan Y; Guo D; Gu Q; Li Y; Li Y; Chen Y; Guan W
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):817-831. PubMed ID: 31820071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses.
    Lorca GL; Barabote RD; Zlotopolski V; Tran C; Winnen B; Hvorup RN; Stonestrom AJ; Nguyen E; Huang LW; Kim DS; Saier MH
    Biochim Biophys Acta; 2007 Jun; 1768(6):1342-66. PubMed ID: 17490609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome plasticity and systems evolution in Streptomyces.
    Zhou Z; Gu J; Li YQ; Wang Y
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S8. PubMed ID: 22759432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species.
    Kim JN; Kim Y; Jeong Y; Roe JH; Kim BG; Cho BK
    J Microbiol Biotechnol; 2015 Oct; 25(10):1599-605. PubMed ID: 26032364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complex extracellular biology of Streptomyces.
    Chater KF; Biró S; Lee KJ; Palmer T; Schrempf H
    FEMS Microbiol Rev; 2010 Mar; 34(2):171-98. PubMed ID: 20088961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretory production of recombinant proteins by Streptomyces.
    Vrancken K; Anné J
    Future Microbiol; 2009 Mar; 4(2):181-8. PubMed ID: 19257845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor.
    Getsin I; Nalbandian GH; Yee DC; Vastermark A; Paparoditis PC; Reddy VS; Saier MH
    BMC Microbiol; 2013 Dec; 13():279. PubMed ID: 24304716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary dynamics of rhomboid proteases in Streptomycetes.
    Novick PA; Carmona NM; Trujillo M
    BMC Res Notes; 2015 Jun; 8():234. PubMed ID: 26054641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans.
    Schaerlaekens K; Lammertyn E; Geukens N; De Keersmaeker S; Anné J; Van Mellaert L
    J Biotechnol; 2004 Sep; 112(3):279-88. PubMed ID: 15313005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication.
    Martín JF; Casqueiro J; Liras P
    Curr Opin Microbiol; 2005 Jun; 8(3):282-93. PubMed ID: 15939351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptomyces protein secretion and its application in biotechnology.
    Hamed MB; Anné J; Karamanou S; Economou A
    FEMS Microbiol Lett; 2018 Nov; 365(22):. PubMed ID: 30299471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twin-arginine translocation pathway in Streptomyces lividans.
    Schaerlaekens K; Schierová M; Lammertyn E; Geukens N; Anné J; Van Mellaert L
    J Bacteriol; 2001 Dec; 183(23):6727-32. PubMed ID: 11698358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances of genome and secondary metabolism in Streptomyces].
    Wu XC; Miao KP; Qian KX
    Yi Chuan Xue Bao; 2005 Nov; 32(11):1221-6. PubMed ID: 16318289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive subcellular topologies of polypeptides in Streptomyces.
    Tsolis KC; Tsare EP; Orfanoudaki G; Busche T; Kanaki K; Ramakrishnan R; Rousseau F; Schymkowitz J; Rückert C; Kalinowski J; Anné J; Karamanou S; Klapa MI; Economou A
    Microb Cell Fact; 2018 Mar; 17(1):43. PubMed ID: 29544487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum.
    Kikuchi Y; Itaya H; Date M; Matsui K; Wu LF
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):67-74. PubMed ID: 18064454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What does it take to be a plant pathogen: genomic insights from Streptomyces species.
    Bignell DR; Huguet-Tapia JC; Joshi MV; Pettis GS; Loria R
    Antonie Van Leeuwenhoek; 2010 Aug; 98(2):179-94. PubMed ID: 20396949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of development in Streptomyces analysed by genome comparisons.
    Chater KF; Chandra G
    FEMS Microbiol Rev; 2006 Sep; 30(5):651-72. PubMed ID: 16911038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of microbial drug efflux systems.
    Paulsen IT; Chen J; Nelson KE; Saier MH
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):145-50. PubMed ID: 11321566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete genome sequence of Streptomyces lividans TK24.
    Rückert C; Albersmeier A; Busche T; Jaenicke S; Winkler A; Friðjónsson ÓH; Hreggviðsson GÓ; Lambert C; Badcock D; Bernaerts K; Anne J; Economou A; Kalinowski J
    J Biotechnol; 2015 Apr; 199():21-2. PubMed ID: 25680930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.