BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27557123)

  • 1. Revisiting Mitochondrial pH with an Improved Algorithm for Calibration of the Ratiometric 5(6)-carboxy-SNARF-1 Probe Reveals Anticooperative Reaction with H+ Ions and Warrants Further Studies of Organellar pH.
    Żurawik TM; Pomorski A; Belczyk-Ciesielska A; Goch G; Niedźwiedzka K; Kucharczyk R; Krężel A; Bal W
    PLoS One; 2016; 11(8):e0161353. PubMed ID: 27557123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition.
    Balut C; vandeVen M; Despa S; Lambrichts I; Ameloot M; Steels P; Smets I
    Kidney Int; 2008 Jan; 73(2):226-32. PubMed ID: 17978815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of Mitochondrial pH Using SNARF-1.
    Ramshesh VK; Lemasters JJ
    Methods Mol Biol; 2018; 1782():351-356. PubMed ID: 29851011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of intracellular pH using flow cytometry with carboxy-SNARF-1.
    Wieder ED; Hang H; Fox MH
    Cytometry; 1993 Nov; 14(8):916-21. PubMed ID: 8287734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of mitochondrial pH in situ.
    Takahashi A; Zhang Y; Centonze E; Herman B
    Biotechniques; 2001 Apr; 30(4):804-8, 810, 812 passim. PubMed ID: 11314264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells.
    Buckler KJ; Vaughan-Jones RD
    Pflugers Arch; 1990 Oct; 417(2):234-9. PubMed ID: 2084617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms.
    Hunter RC; Beveridge TJ
    Appl Environ Microbiol; 2005 May; 71(5):2501-10. PubMed ID: 15870340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic pH measurements in single cardiac myocytes using carboxy-seminaphthorhodafluor-1.
    Blank PS; Silverman HS; Chung OY; Hogue BA; Stern MD; Hansford RG; Lakatta EG; Capogrossi MC
    Am J Physiol; 1992 Jul; 263(1 Pt 2):H276-84. PubMed ID: 1636765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of mitochondrial pH using SNARF-1.
    Ramshesh VK; Lemasters JJ
    Methods Mol Biol; 2012; 810():243-8. PubMed ID: 22057572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence behavior of the pH-sensitive probe carboxy SNARF-1 in suspension of liposomes.
    Vecer J; Holoubek A; Sigler K
    Photochem Photobiol; 2001 Jul; 74(1):8-13. PubMed ID: 11460541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent measurements of the free cytosolic concentrations of H+ and Na+ ions with fluorescent indicators.
    Sheldon C; Cheng YM; Church J
    Pflugers Arch; 2004 Dec; 449(3):307-18. PubMed ID: 15452716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for redistribution-associated intracellular pK shifts of the pH-sensitive fluoroprobe carboxy-SNARF-1.
    Opitz N; Merten E; Acker H
    Pflugers Arch; 1994 Jun; 427(3-4):332-42. PubMed ID: 8072854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric measurement of intracellular pH in cultured human keratinocytes using carboxy-SNARF-1 and flow cytometry.
    van Erp PE; Jansen MJ; de Jongh GJ; Boezeman JB; Schalkwijk J
    Cytometry; 1991; 12(2):127-32. PubMed ID: 2049969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of spectrum-shifting intracellular pH probes 5'(and 6')-carboxy-10-dimethylamino-3-hydroxyspiro[7H-benzo[c]xanthene-7, 1'(3'H)-isobenzofuran]-3'-one and 2',7'-biscarboxyethyl-5(and 6)-carboxyfluorescein.
    Owen CS
    Anal Biochem; 1992 Jul; 204(1):65-71. PubMed ID: 1514696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local anesthetics depolarize mitochondrial membrane potential by intracellular alkalization in rat dorsal root ganglion neurons.
    Onizuka S; Tamura R; Hosokawa N; Kawasaki Y; Tsuneyoshi I
    Anesth Analg; 2010 Sep; 111(3):775-83. PubMed ID: 20686005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of apoptosis by flow cytometry of cells simultaneously stained for intracellular pH (carboxy SNARF-1) and membrane permeability (Hoechst 33342).
    Reynolds JE; Li J; Eastman A
    Cytometry; 1996 Dec; 25(4):349-57. PubMed ID: 8946142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH.
    Srivastava A; Krishnamoorthy G
    Anal Biochem; 1997 Jul; 249(2):140-6. PubMed ID: 9212865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic microscopy analysis of the interior pH of individual phospholipid vesicles.
    Heider EC; Myers GA; Harris JM
    Anal Chem; 2011 Nov; 83(21):8230-8. PubMed ID: 21962221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration and measurement of mitochondrial pH in intact adult rat cardiomyocytes.
    Gao M; Qin Y; Li A; Liu H; Chen L; Liu B; Zhang Y; Gao Y; Gong G
    STAR Protoc; 2021 Jun; 2(2):100543. PubMed ID: 34036286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry.
    Seksek O; Bolard J
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():257-62. PubMed ID: 8834810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.