These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27557194)

  • 1. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.
    Hu Q; Lim JS; Liu H; Fu Y
    Opt Express; 2016 Aug; 24(17):19148-56. PubMed ID: 27557194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy.
    Kumar D; Gautam S; Kumar S; Gupta S; Srivastava HB; Thakur SN; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Apr; 176():47-51. PubMed ID: 28064138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone.
    Chen X; Guo D; Choa FS; Wang CC; Trivedi S; Snyder AP; Ru G; Fan J
    Appl Opt; 2013 Apr; 52(12):2626-32. PubMed ID: 23669670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff Photoacoustic Spectroscopy of Explosives.
    Marcus LS; Holthoff EL; Pellegrino PM
    Appl Spectrosc; 2017 May; 71(5):833-838. PubMed ID: 27340220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff pump-probe photothermal detection of hazardous chemicals.
    Sharma RC; Kumar S; Parmar A; Mann M; Prakash S; Thakur SN
    Sci Rep; 2020 Sep; 10(1):15053. PubMed ID: 32929139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoacoustic remote sensing of suspicious objects for defence and forensic applications.
    Sharma RC; Kumar S; Kumar S; Mann M; Mayank ; Sharma M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117445. PubMed ID: 31382229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Ultraviolet Standoff Photoacoustic Spectroscopy of Trace Explosives.
    Zrimsek AB; Bykov SV; Asher SA
    Appl Spectrosc; 2019 Jun; 73(6):601-609. PubMed ID: 30012001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributed review: quantum cascade laser based photoacoustic detection of explosives.
    Li JS; Yu B; Fischer H; Chen W; Yalin AP
    Rev Sci Instrum; 2015 Mar; 86(3):031501. PubMed ID: 25832204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-contact photoacoustic imaging with a silicon photonics-based Laser Doppler Vibrometer.
    Dieussaert E; Baets R; Jans H; Rottenberg X; Li Y
    Sci Rep; 2024 Oct; 14(1):22953. PubMed ID: 39362973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Beam Photothermal Spectroscopy Employing a Mach-Zehnder Interferometer and an External Cavity Quantum Cascade Laser for Detection of Water Traces in Organic Solvents.
    Ricchiuti G; Dabrowska A; Pinto D; Ramer G; Lendl B
    Anal Chem; 2022 Nov; 94(47):16353-16360. PubMed ID: 36383024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces.
    Kendziora CA; Furstenberg R; Papantonakis M; Nguyen V; Byers J; Andrew McGill R
    Appl Opt; 2015 Nov; 54(31):F129-38. PubMed ID: 26560599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-ppm-Level Ammonia Detection Using Photoacoustic Spectroscopy with an Optical Microphone Based on a Phase Interferometer.
    Bonilla-Manrique OE; Posada-Roman JE; Garcia-Souto JA; Ruiz-Llata M
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of photoacoustic excitation and laser vibrometry to remotely detect trace explosives.
    Wynn CM; Haupt RW; Doherty JH; Kunz RR; Bai W; Diebold G
    Appl Opt; 2016 Nov; 55(32):9054-9059. PubMed ID: 27857289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable optical parametric amplification of a single-frequency quantum cascade laser around 8 μm in ZnGeP2.
    Clément Q; Melkonian JM; Barrientos-Barria J; Dherbecourt JB; Raybaut M; Godard A
    Opt Lett; 2013 Oct; 38(20):4046-9. PubMed ID: 24321919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.
    El-Sharkawy YH; Elbasuney S
    Forensic Sci Int; 2017 Aug; 277():215-222. PubMed ID: 28662404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy.
    Sun J; Ding J; Liu N; Yang G; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():532-538. PubMed ID: 29096120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.
    Lambrecht A; Pfeifer M; Konz W; Herbst J; Axtmann F
    Analyst; 2014 May; 139(9):2070-8. PubMed ID: 24367797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual beam photoacoustic infrared spectroscopy of solids using an external cavity quantum cascade laser.
    Dehghany M; Michaelian KH
    Rev Sci Instrum; 2012 Jun; 83(6):064901. PubMed ID: 22755653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum cascade laser based standoff photoacoustic chemical detection.
    Chen X; Cheng L; Guo D; Kostov Y; Choa FS
    Opt Express; 2011 Oct; 19(21):20251-7. PubMed ID: 21997036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.