BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27557261)

  • 21. Pulsed photoacoustic flow imaging with a handheld system.
    van den Berg PJ; Daoudi K; Steenbergen W
    J Biomed Opt; 2016 Feb; 21(2):26004. PubMed ID: 26857470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor.
    Haindl R; Preisser S; Andreana M; Rohringer W; Sturtzel C; Distel M; Chen Z; Rank E; Fischer B; Drexler W; Liu M
    Opt Lett; 2017 Nov; 42(21):4319-4322. PubMed ID: 29088153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale photoacoustic tomography for label-free super-resolution imaging: simulation study.
    Samant P; Burt TA; Zhao ZJ; Xiang L
    J Biomed Opt; 2018 Nov; 23(11):1-10. PubMed ID: 30411552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective.
    Wang H; Yang X; Liu Y; Jiang B; Luo Q
    Opt Express; 2013 Oct; 21(20):24210-8. PubMed ID: 24104331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequency-domain photoacoustic phased array probe for biomedical imaging applications.
    Telenkov S; Alwi R; Mandelis A; Worthington A
    Opt Lett; 2011 Dec; 36(23):4560-2. PubMed ID: 22139242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving visibility in photoacoustic imaging using dynamic speckle illumination.
    Gateau J; Chaigne T; Katz O; Gigan S; Bossy E
    Opt Lett; 2013 Dec; 38(23):5188-91. PubMed ID: 24281542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical and photoacoustic radiofrequency spectroscopic analysis for detecting red blood cell death.
    Fadhel MN; Hysi E; Strohm EM; Kolios MC
    J Biophotonics; 2019 Sep; 12(9):e201800431. PubMed ID: 31050867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optically excited nanoscale ultrasonic transducers.
    Smith RJ; Cota FP; Marques L; Chen X; Arca A; Webb K; Aylott J; Somekh MG; Clark M
    J Acoust Soc Am; 2015 Jan; 137(1):219-27. PubMed ID: 25618053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of Ultrawide Bandwidth for Optoacoustic Esophagus Imaging.
    He H; Buehler A; Bozhko D; Jian X; Cui Y; Ntziachristos V
    IEEE Trans Med Imaging; 2018 May; 37(5):1162-1167. PubMed ID: 29727279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light.
    Hussain A; Daoudi K; Hondebrink E; Steenbergen W
    J Biomed Opt; 2014 Jun; 19(6):066002. PubMed ID: 24887744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic analysis of frequency dependent differential photoacoustic cross-section data for source size estimation.
    Kaushik A; Paul A; Saha RK
    J Opt Soc Am A Opt Image Sci Vis; 2020 Dec; 37(12):1895-1904. PubMed ID: 33362131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-optical ultrasonic detector based on differential interference.
    Zhang P; Miao Y; Ma Y; Niu P; Zhang L; Zhang L; Gao F
    Opt Lett; 2022 Sep; 47(18):4790-4793. PubMed ID: 36107091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simplified method for ultra high-resolution photoacoustic microscopy via transient absorption.
    Mattison SP; Applegate BE
    Opt Lett; 2014 Aug; 39(15):4474-7. PubMed ID: 25078206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy.
    Yang F; Guo G; Zheng S; Fang H; Min C; Song W; Yuan X
    Photoacoustics; 2021 Dec; 24():100305. PubMed ID: 34956832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband and Ultrasensitive Graphene-Based Mechanical Wave Detector with Nanosecond Response Used for Biological Photoacoustic Imaging.
    Li Z; Zhu X; Wu T; Han X; Xing F; Wang G
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17268-17275. PubMed ID: 32216374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.
    Chen J; Wang M; Cheng JC; Wang YH; Li PC; Cheng X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):766-75. PubMed ID: 22547287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque.
    Daeichin V; Wu M; De Jong N; van der Steen AF; van Soest G
    Ultrasound Med Biol; 2016 Aug; 42(8):2017-25. PubMed ID: 27181689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography.
    Pramanik M
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):621-7. PubMed ID: 24690661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of multiphoton photoacoustic spectroscopy for subsurface brain tissue diagnosis and imaging.
    Dahal S; Cullum BM
    J Biomed Opt; 2016 Apr; 21(4):47001. PubMed ID: 27086691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging.
    Hsieh BY; Chen SL; Ling T; Guo LJ; Li PC
    Opt Express; 2012 Jan; 20(2):1588-96. PubMed ID: 22274501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.