These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27557261)

  • 41. Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation.
    Hysi E; Saha RK; Kolios MC
    J Biomed Opt; 2012 Dec; 17(12):125006. PubMed ID: 23235833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging.
    Jin T; Guo H; Jiang H; Ke B; Xi L
    Opt Lett; 2017 Nov; 42(21):4434-4437. PubMed ID: 29088181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements.
    Liu T; Lizzi FL; Ketterling JA; Silverman RH; Kutcher GJ
    Med Phys; 2007 Mar; 34(3):1037-46. PubMed ID: 17441250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a photoacoustic, ultrasound and fluorescence imaging catheter for the study of atherosclerotic plaque.
    Abran M; Cloutier G; Cardinal MH; Chayer B; Tardif JC; Lesage F
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):696-703. PubMed ID: 25350946
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dual Modality Noncontact Photoacoustic and Spectral Domain OCT Imaging.
    Leiss-Holzinger E; Bauer-Marschallinger J; Hochreiner A; Hollinger P; Berer T
    Ultrason Imaging; 2016 Jan; 38(1):19-31. PubMed ID: 25900968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments.
    Bohndiek SE; Bodapati S; Van De Sompel D; Kothapalli SR; Gambhir SS
    PLoS One; 2013; 8(9):e75533. PubMed ID: 24086557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions.
    Li Y; Fang H; Min C; Yuan X
    Sci Rep; 2015 Oct; 5():14801. PubMed ID: 26442830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrawideband reflection-mode optoacoustic mesoscopy.
    Omar M; Soliman D; Gateau J; Ntziachristos V
    Opt Lett; 2014 Jul; 39(13):3911-4. PubMed ID: 24978769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast subcellular optical coherence photoacoustic microscopy for pigment cell imaging.
    Li L; Dai C; Li Q; Zhao Q; Jiang X; Chai X; Zhou C
    Opt Lett; 2015 Oct; 40(19):4448-51. PubMed ID: 26421553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media.
    Lashkari B; Mandelis A
    J Acoust Soc Am; 2011 Sep; 130(3):1313-24. PubMed ID: 21895073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time monitoring of high-intensity focused ultrasound ablations with photoacoustic technique: an in vitro study.
    Cui H; Yang X
    Med Phys; 2011 Oct; 38(10):5345-50. PubMed ID: 21992353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging.
    Jansen K; Wu M; van der Steen AF; van Soest G
    Opt Express; 2013 Sep; 21(18):21472-84. PubMed ID: 24104022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated photoacoustic and diffuse optical tomography system for imaging of human finger joints in vivo.
    Xi L; Jiang H
    J Biophotonics; 2016 Mar; 9(3):213-7. PubMed ID: 26431473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis.
    Xu G; Meng ZX; Lin JD; Yuan J; Carson PL; Joshi B; Wang X
    Radiology; 2014 Apr; 271(1):248-54. PubMed ID: 24475855
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection.
    Xi L; Li X; Yao L; Grobmyer S; Jiang H
    Med Phys; 2012 May; 39(5):2584-94. PubMed ID: 22559629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media.
    Lai P; Xu X; Liu H; Suzuki Y; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):080505. PubMed ID: 21895305
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.
    Strohm EM; Kolios MC
    Cytometry A; 2015 Aug; 87(8):741-9. PubMed ID: 26079610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coherent photoacoustic-ultrasound correlation and imaging.
    Gao F; Feng X; Zheng Y
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2507-2512. PubMed ID: 24801584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Volumetric optoacoustic imaging with multi-bandwidth deconvolution.
    Buehler A; Deán-Ben XL; Razansky D; Ntziachristos V
    IEEE Trans Med Imaging; 2014 Apr; 33(4):814-21. PubMed ID: 24058023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy.
    Zhang Z; Dong B; Li H; Zhou F; Zhang HF; Sun C
    J Appl Phys; 2014 Oct; 116(14):144501. PubMed ID: 25378712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.