BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27557398)

  • 1. Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model.
    Römgens AM; Bader DL; Bouwstra JA; Oomens CW
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1599-609. PubMed ID: 27557398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis and optimization of microneedle arrays for transdermal vaccine delivery: comparison of coated and dissolving microneedles.
    Yolai N; Suttirat P; Leelawattanachai J; Boonyasiriwat C; Modchang C
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1379-1387. PubMed ID: 36048187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter optimization toward optimal microneedle-based dermal vaccination.
    van der Maaden K; Varypataki EM; Yu H; Romeijn S; Jiskoot W; Bouwstra J
    Eur J Pharm Sci; 2014 Nov; 64():18-25. PubMed ID: 25151530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical compartment model for antigen kinetics in the skin.
    Römgens AM; Bader DL; Bouwstra JA; Oomens CW
    Eur J Pharm Sci; 2016 Mar; 84():18-25. PubMed ID: 26776970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method.
    Shu W; Heimark H; Bertollo N; Tobin DJ; O'Cearbhaill ED; Annaidh AN
    Acta Biomater; 2021 Nov; 135():403-413. PubMed ID: 34492370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolving Microneedle Patches for Dermal Vaccination.
    Leone M; Mönkäre J; Bouwstra JA; Kersten G
    Pharm Res; 2017 Nov; 34(11):2223-2240. PubMed ID: 28718050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microneedles for vaccine delivery: challenges and future perspectives.
    Shin CI; Jeong SD; Rejinold NS; Kim YC
    Ther Deliv; 2017 Jun; 8(6):447-460. PubMed ID: 28530151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.
    van der Maaden K; Varypataki EM; Romeijn S; Ossendorp F; Jiskoot W; Bouwstra J
    Eur J Pharm Biopharm; 2014 Oct; 88(2):310-5. PubMed ID: 24820032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination.
    Chen MC; Huang SF; Lai KY; Ling MH
    Biomaterials; 2013 Apr; 34(12):3077-86. PubMed ID: 23369214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diphtheria toxoid and N-trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice.
    Schipper P; van der Maaden K; Groeneveld V; Ruigrok M; Romeijn S; Uleman S; Oomens C; Kersten G; Jiskoot W; Bouwstra J
    J Control Release; 2017 Sep; 262():28-36. PubMed ID: 28710002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
    Al-Qallaf B; Das DB
    Ann N Y Acad Sci; 2009 Apr; 1161():83-94. PubMed ID: 19426308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system.
    Widera G; Johnson J; Kim L; Libiran L; Nyam K; Daddona PE; Cormier M
    Vaccine; 2006 Mar; 24(10):1653-64. PubMed ID: 16246466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microneedle technologies for (trans)dermal drug and vaccine delivery.
    van der Maaden K; Jiskoot W; Bouwstra J
    J Control Release; 2012 Jul; 161(2):645-55. PubMed ID: 22342643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedles: A New Generation Vaccine Delivery System.
    Menon I; Bagwe P; Gomes KB; Bajaj L; Gala R; Uddin MN; D'Souza MJ; Zughaier SM
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination.
    van der Maaden K; Sekerdag E; Schipper P; Kersten G; Jiskoot W; Bouwstra J
    Langmuir; 2015 Aug; 31(31):8654-60. PubMed ID: 26145437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral mucosal vaccination using integrated fiber microneedles.
    Creighton RL; Faber KA; Tobos CI; Doan MA; Guo T; Woodrow KA
    J Control Release; 2024 Mar; 367():649-660. PubMed ID: 38295993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.
    Pearson FE; O'Mahony C; Moore AC; Hill AV
    Vaccine; 2015 Jun; 33(28):3248-55. PubMed ID: 25839104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of microneedles' insertion into skin.
    Kong XQ; Zhou P; Wu CW
    Comput Methods Biomech Biomed Engin; 2011 Sep; 14(9):827-35. PubMed ID: 21480017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.
    Kochhar JS; Quek TC; Soon WJ; Choi J; Zou S; Kang L
    J Pharm Sci; 2013 Nov; 102(11):4100-8. PubMed ID: 24027112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microneedles for transdermal drug delivery.
    Prausnitz MR
    Adv Drug Deliv Rev; 2004 Mar; 56(5):581-7. PubMed ID: 15019747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.