These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27557446)

  • 1. An integrative transcriptomic atlas of organogenesis in human embryos.
    Gerrard DT; Berry AA; Jennings RE; Piper Hanley K; Bobola N; Hanley NA
    Elife; 2016 Aug; 5():. PubMed ID: 27557446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis.
    Xue L; Cai JY; Ma J; Huang Z; Guo MX; Fu LZ; Shi YB; Li WX
    BMC Genomics; 2013 Aug; 14():568. PubMed ID: 23961710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single-cell transcriptome atlas profiles early organogenesis in human embryos.
    Xu Y; Zhang T; Zhou Q; Hu M; Qi Y; Xue Y; Nie Y; Wang L; Bao Z; Shi W
    Nat Cell Biol; 2023 Apr; 25(4):604-615. PubMed ID: 36928764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation.
    Gluck C; Min S; Oyelakin A; Smalley K; Sinha S; Romano RA
    BMC Genomics; 2016 Nov; 17(1):923. PubMed ID: 27852218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-cell transcriptome atlas for zebrafish development.
    Farnsworth DR; Saunders LM; Miller AC
    Dev Biol; 2020 Mar; 459(2):100-108. PubMed ID: 31782996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression during the human organogenesis: from transcription profiles to function predictions.
    Xue L; Yi H; Huang Z; Shi YB; Li WX
    Int J Biol Sci; 2011; 7(7):1068-76. PubMed ID: 21927576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis.
    Sampath Kumar A; Tian L; Bolondi A; Hernández AA; Stickels R; Kretzmer H; Murray E; Wittler L; Walther M; Barakat G; Haut L; Elkabetz Y; Macosko EZ; Guignard L; Chen F; Meissner A
    Nat Genet; 2023 Jul; 55(7):1176-1185. PubMed ID: 37414952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-cell atlas of chromatin accessibility in mouse organogenesis.
    Sun K; Liu X; Lan X
    Nat Cell Biol; 2024 Jul; 26(7):1200-1211. PubMed ID: 38977846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic transcriptome landscape of Asian domestic honeybee (Apis cerana) embryonic development revealed by high-quality RNA sequencing.
    Hu X; Ke L; Wang Z; Zeng Z
    BMC Dev Biol; 2018 Apr; 18(1):11. PubMed ID: 29653508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-cell transcriptomic atlas of the developing chicken limb.
    Feregrino C; Sacher F; Parnas O; Tschopp P
    BMC Genomics; 2019 May; 20(1):401. PubMed ID: 31117954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of neurulation and early organogenesis in rat embryos: an in vivo and ex vivo comparison.
    Robinson JF; Verhoef A; Piersma AH
    Toxicol Sci; 2012 Mar; 126(1):255-66. PubMed ID: 22262562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data.
    Qiu JJ; Ren ZR; Yan JB
    Oncotarget; 2016 Sep; 7(38):61215-61228. PubMed ID: 27542205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-cell atlas of mouse lung development.
    Negretti NM; Plosa EJ; Benjamin JT; Schuler BA; Habermann AC; Jetter CS; Gulleman P; Bunn C; Hackett AN; Ransom M; Taylor CJ; Nichols D; Matlock BK; Guttentag SH; Blackwell TS; Banovich NE; Kropski JA; Sucre JMS
    Development; 2021 Dec; 148(24):. PubMed ID: 34927678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organogenetic transcriptomes of the Drosophila embryo at single cell resolution.
    Peng D; Jackson D; Palicha B; Kernfeld E; Laughner N; Shoemaker A; Celniker SE; Loganathan R; Cahan P; Andrew DJ
    Development; 2024 Jan; 151(2):. PubMed ID: 38174902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrospective analysis: reproducibility of interblastomere differences of mRNA expression in 2-cell stage mouse embryos is remarkably poor due to combinatorial mechanisms of blastomere diversification.
    Casser E; Israel S; Schlatt S; Nordhoff V; Boiani M
    Mol Hum Reprod; 2018 Jul; 24(7):388-400. PubMed ID: 29746690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development.
    Lowe R; Gemma C; Rakyan VK; Holland ML
    BMC Genomics; 2015 Apr; 16(1):295. PubMed ID: 25888192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional profiles of bovine in vivo pre-implantation development.
    Jiang Z; Sun J; Dong H; Luo O; Zheng X; Obergfell C; Tang Y; Bi J; O'Neill R; Ruan Y; Chen J; Tian XC
    BMC Genomics; 2014 Sep; 15(1):756. PubMed ID: 25185836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long noncoding RNAs in organogenesis: making the difference.
    Grote P; Herrmann BG
    Trends Genet; 2015 Jun; 31(6):329-35. PubMed ID: 25743487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long non-coding RNAs in human early embryonic development and their potential in ART.
    Bouckenheimer J; Assou S; Riquier S; Hou C; Philippe N; Sansac C; Lavabre-Bertrand T; Commes T; Lemaître JM; Boureux A; De Vos J
    Hum Reprod Update; 2016 Dec; 23(1):19-40. PubMed ID: 27655590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo.
    Castillo J; Jodar M; Oliva R
    Hum Reprod Update; 2018 Sep; 24(5):535-555. PubMed ID: 29800303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.