These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27557732)

  • 1. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.
    Khestanova E; Guinea F; Fumagalli L; Geim AK; Grigorieva IV
    Nat Commun; 2016 Aug; 7():12587. PubMed ID: 27557732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of the shape of graphene nanobubbles on trapped substance.
    Ghorbanfekr-Kalashami H; Vasu KS; Nair RR; Peeters FM; Neek-Amal M
    Nat Commun; 2017 Jun; 8():15844. PubMed ID: 28621311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS
    Burdanova MG; Kashtiban RJ; Zheng Y; Xiang R; Chiashi S; Woolley JM; Staniforth M; Sakamoto-Rablah E; Xie X; Broome M; Sloan J; Anisimov A; Kauppinen EI; Maruyama S; Lloyd-Hughes J
    Nano Lett; 2020 May; 20(5):3560-3567. PubMed ID: 32324411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the shape of a graphene nanobubble.
    Jain SK; Juričić V; Barkema GT
    Phys Chem Chem Phys; 2017 Mar; 19(11):7465-7470. PubMed ID: 28256643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride.
    Dai S; Fei Z; Ma Q; Rodin AS; Wagner M; McLeod AS; Liu MK; Gannett W; Regan W; Watanabe K; Taniguchi T; Thiemens M; Dominguez G; Castro Neto AH; Zettl A; Keilmann F; Jarillo-Herrero P; Fogler MM; Basov DN
    Science; 2014 Mar; 343(6175):1125-9. PubMed ID: 24604197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Adhesion Energy in van der Waals Crystals and Heterostructures from Atomically Thin Bubbles.
    Blundo E; Yildirim T; Pettinari G; Polimeni A
    Phys Rev Lett; 2021 Jul; 127(4):046101. PubMed ID: 34355951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the phase transition inside graphene nanobubbles filled with ethane.
    Iakovlev E; Zhilyaev P; Akhatov I
    Phys Chem Chem Phys; 2019 Aug; 21(33):18099-18104. PubMed ID: 31393481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures.
    Vasić B; Ralević U; Aškrabić S; Čapeta D; Kralj M
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34972096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices.
    Haigh SJ; Gholinia A; Jalil R; Romani S; Britnell L; Elias DC; Novoselov KS; Ponomarenko LA; Geim AK; Gorbachev R
    Nat Mater; 2012 Sep; 11(9):764-7. PubMed ID: 22842512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal shape of graphene nanobubbles on metallic substrate.
    Aslyamov T; Zahra KM; Zhilyaev P; Walton AS
    Phys Chem Chem Phys; 2022 Mar; 24(11):6935-6940. PubMed ID: 35254356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices.
    Masubuchi S; Morimoto M; Morikawa S; Onodera M; Asakawa Y; Watanabe K; Taniguchi T; Machida T
    Nat Commun; 2018 Apr; 9(1):1413. PubMed ID: 29650955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-emitting diodes by band-structure engineering in van der Waals heterostructures.
    Withers F; Del Pozo-Zamudio O; Mishchenko A; Rooney AP; Gholinia A; Watanabe K; Taniguchi T; Haigh SJ; Geim AK; Tartakovskii AI; Novoselov KS
    Nat Mater; 2015 Mar; 14(3):301-6. PubMed ID: 25643033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic band-structure tuning of graphene moiré superlattices with pressure.
    Yankowitz M; Jung J; Laksono E; Leconte N; Chittari BL; Watanabe K; Taniguchi T; Adam S; Graf D; Dean CR
    Nature; 2018 May; 557(7705):404-408. PubMed ID: 29769674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals interaction affects wrinkle formation in two-dimensional materials.
    Ares P; Wang YB; Woods CR; Dougherty J; Fumagalli L; Guinea F; Davidovitch B; Novoselov KS
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures.
    Zhou KG; Withers F; Cao Y; Hu S; Yu G; Casiraghi C
    ACS Nano; 2014 Oct; 8(10):9914-24. PubMed ID: 25198732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic study of the solid state inside graphene nanobubbles.
    Iakovlev E; Zhilyaev P; Akhatov I
    Sci Rep; 2017 Dec; 7(1):17906. PubMed ID: 29263360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MoS
    Sun Y; Zhong W; Wang Y; Xu X; Wang T; Wu L; Du Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34243-34255. PubMed ID: 28901126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectricity in Monolayer Hexagonal Boron Nitride.
    Ares P; Cea T; Holwill M; Wang YB; Roldán R; Guinea F; Andreeva DV; Fumagalli L; Novoselov KS; Woods CR
    Adv Mater; 2020 Jan; 32(1):e1905504. PubMed ID: 31736228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.