These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27557962)

  • 21. Effects of Sediment Chemical Properties on Phosphorus Release Rates in the Sediment-Water Interface of the Steppe Wetlands.
    He J; Su D; Lv S; Diao Z; Xie J; Luo Y
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29165378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.
    Zhao J; Zhao Y; Zhao X; Jiang C
    Environ Sci Pollut Res Int; 2016 May; 23(9):9093-104. PubMed ID: 26832867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary, China: Concentrations, fluxes and environmental loads.
    Yang P; Lai DYF; Jin B; Bastviken D; Tan L; Tong C
    Sci Total Environ; 2017 Dec; 603-604():256-267. PubMed ID: 28628817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.
    Hoggarth CG; Hall BD; Mitchell CP
    Environ Pollut; 2015 Oct; 205():269-77. PubMed ID: 26099458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significance of dredging on sediment denitrification in Meiliang Bay, China: a year long simulation study.
    Zhong J; Fan C; Zhang L; Edward H; Ding S; Li B; Liu G
    J Environ Sci (China); 2010; 22(1):68-75. PubMed ID: 20397389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorus partitioning between sediment and water in the riparian wetland in response to the hydrological regimes.
    Wang Z; Li S; Zhu J; Zhang Z
    Chemosphere; 2013 Feb; 90(8):2288-96. PubMed ID: 23200842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface.
    Liu C; Shao S; Shen Q; Fan C; Zhang L; Zhou Q
    Environ Pollut; 2016 Apr; 211():165-72. PubMed ID: 26766534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture.
    Lin YF; Jing SR; Lee DY; Chang YF; Sui HY
    Water Environ Res; 2010 Aug; 82(8):759-68. PubMed ID: 20853755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in benthic nutrient sources within a wetland after hydrologic reconnection.
    Kuwabara JS; Topping BR; Carter JL; Wood TM; Cameron JM; Asbill-Case JR; Carlson RA
    Environ Toxicol Chem; 2012 Sep; 31(9):1995-2013. PubMed ID: 22707141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dredging of drainage ditches increases short-term transport of soluble phosphorus.
    Smith DR; Warnemuende EA; Haggard BE; Huang C
    J Environ Qual; 2006; 35(2):611-6. PubMed ID: 16510706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.
    Dierberg FE; DeBusk TA; Jackson SD; Chimney MJ; Pietro K
    Water Res; 2002 Mar; 36(6):1409-22. PubMed ID: 11996331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coastal aquaculture regulates phosphorus cycling in estuarine wetlands: Mobilization, kinetic resupply, and source-sink process.
    Xiao K; Pan F; Li Y; Li Z; Li H; Guo Z; Wang X; Zheng C
    Water Res; 2023 May; 234():119832. PubMed ID: 36889088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of sediment phosphorus affected by mobile aeration: Pilot-scale simulation study in a hypereutrophic pond.
    Chen C; Wang Y; Pang X; Long L; Xu M; Xiao Y; Liu Y; Yang G; Deng S; He J; Tang H
    J Environ Manage; 2021 Nov; 297():113297. PubMed ID: 34280863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.
    Lewis AS; Huntington TG; Marvin-DiPasquale MC; Amirbahman A
    Environ Pollut; 2016 May; 212():366-373. PubMed ID: 26874318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface.
    Yu J; Ding S; Zhong J; Fan C; Chen Q; Yin H; Zhang L; Zhang Y
    Sci Total Environ; 2017 Aug; 592():662-673. PubMed ID: 28318691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wetland phosphorus dynamics and phosphorus removal potential.
    Skinner M
    Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed.
    Yang W; Liu Y; Ou C; Gabor S
    J Environ Manage; 2016 Jun; 174():26-34. PubMed ID: 26989942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Phosphorus Fractions and Release Risk in Surface Sediments of an Agricultural Headwater Stream System in Hefei Suburban, China].
    Pei TT; Li RZ; Gao SD; Luo YY
    Huan Jing Ke Xue; 2016 Feb; 37(2):548-57. PubMed ID: 27363143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water, vegetation and sediment gradients in submerged aquatic vegetation mesocosms used for low-level phosphorus removal.
    DeBusk TA; Kharbanda M; Jackson SD; Grace KA; Hileman K; Dierberg FE
    Sci Total Environ; 2011 Nov; 409(23):5046-56. PubMed ID: 21925712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus sorption by sediments in a southeastern coastal plain in-stream wetland.
    Novak JM; Watts DW
    J Environ Qual; 2006; 35(6):1975-82. PubMed ID: 17071865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.