These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27557964)
1. Risk element sorption/desorption characteristics of dry olive residue: a technique for the potential immobilization of risk elements in contaminated soils. Hovorka M; Száková J; García-Sánchez M; Acebal MB; García-Romera I; Tlustoš P Environ Sci Pollut Res Int; 2016 Nov; 23(22):22614-22622. PubMed ID: 27557964 [TBL] [Abstract][Full Text] [Related]
2. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils. García-Sánchez M; Stejskalová T; García-Romera I; Száková J; Tlustoš P J Environ Manage; 2017 Oct; 201():110-119. PubMed ID: 28651221 [TBL] [Abstract][Full Text] [Related]
3. Shifts in soil chemical properties and bacterial communities responding to biotransformed dry olive residue used as organic amendment. Siles JA; Cajthaml T; Hernández P; Pérez-Mendoza D; García-Romera I; Sampedro I Microb Ecol; 2015 Jul; 70(1):231-43. PubMed ID: 25501891 [TBL] [Abstract][Full Text] [Related]
4. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil. Trakal L; Komárek M; Száková J; Tlustos P; Tejnecký V; Drábek O Int J Phytoremediation; 2012 Sep; 14(8):806-19. PubMed ID: 22908646 [TBL] [Abstract][Full Text] [Related]
5. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chaturvedi PK; Seth CS; Misra V Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377 [TBL] [Abstract][Full Text] [Related]
6. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. Siles JA; Rachid CT; Sampedro I; García-Romera I; Tiedje JM PLoS One; 2014; 9(7):e103035. PubMed ID: 25058610 [TBL] [Abstract][Full Text] [Related]
7. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Puga AP; Abreu CA; Melo LC; Paz-Ferreiro J; Beesley L Environ Sci Pollut Res Int; 2015 Nov; 22(22):17606-14. PubMed ID: 26146374 [TBL] [Abstract][Full Text] [Related]
8. Effects of dry olive residue transformed by Coriolopsis floccosa (Polyporaceae) on the distribution and dynamic of a culturable fungal soil community. Siles JA; González-Menéndez V; Platas G; Sampedro I; García-Romera I; Bills GF Microb Ecol; 2014 Apr; 67(3):648-58. PubMed ID: 24419542 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. Covelo EF; Vega FA; Andrade ML J Hazard Mater; 2007 Aug; 147(3):852-61. PubMed ID: 17346879 [TBL] [Abstract][Full Text] [Related]
10. [Sorption-desorption behaviors of Cd2+ and Pb2+ in different pollution load soils]. Chen S; Sun LN; Sun TH; Chao L Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1819-26. PubMed ID: 17974251 [TBL] [Abstract][Full Text] [Related]
11. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue. Siles JA; Pascual J; González-Menéndez V; Sampedro I; García-Romera I; Bills GF Syst Appl Microbiol; 2014 Mar; 37(2):113-20. PubMed ID: 24268790 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the use of organic composts derived from municipal solid waste for the adsorption of Pb, Zn and Cd. Lima JZ; Raimondi IM; Schalch V; Rodrigues VGS J Environ Manage; 2018 Nov; 226():386-399. PubMed ID: 30138838 [TBL] [Abstract][Full Text] [Related]
13. [Sorption-desorption behavior of Cd2 + and Pb2+ in rhizosphere and bulk soil]. Chen S; Sun TH; Sun LN; Chao L; Yang CL Huan Jing Ke Xue; 2007 Apr; 28(4):843-51. PubMed ID: 17639948 [TBL] [Abstract][Full Text] [Related]
14. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Jiang H; Li T; Han X; Yang X; He Z Environ Monit Assess; 2012 Oct; 184(10):6325-35. PubMed ID: 22045331 [TBL] [Abstract][Full Text] [Related]
15. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering. Antoniadis V; Golia EE Chemosphere; 2015 Nov; 138():364-9. PubMed ID: 26133698 [TBL] [Abstract][Full Text] [Related]
16. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Pichtel J; Bradway DJ Bioresour Technol; 2008 Mar; 99(5):1242-51. PubMed ID: 17475483 [TBL] [Abstract][Full Text] [Related]
17. Studies on the sorption and desorption characteristics of Zn(II) on the surface soils of nuclear power plant sites in India using a radiotracer technique. Dahiya S; Shanwal AV; Hegde AG Chemosphere; 2005 Sep; 60(9):1253-61. PubMed ID: 16018896 [TBL] [Abstract][Full Text] [Related]
18. Sequential sorption of lead and cadmium in three tropical soils. Appel C; Ma LQ; Rhue RD; Reve W Environ Pollut; 2008 Sep; 155(1):132-40. PubMed ID: 18069107 [TBL] [Abstract][Full Text] [Related]
19. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. Li T; Di Z; Yang X; Sparks DL J Hazard Mater; 2011 Sep; 192(3):1616-22. PubMed ID: 21782330 [TBL] [Abstract][Full Text] [Related]
20. Lead sorption-desorption from organic residues. Duarte Zaragoza VM; Carrillo R; Gutierrez Castorena CM Environ Technol; 2011; 32(3-4):353-61. PubMed ID: 21780703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]