These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27558445)

  • 41. The component polypeptide chains of bovine insulin nucleate or inhibit aggregation of the parent protein in a conformation-dependent manner.
    Devlin GL; Knowles TP; Squires A; McCammon MG; Gras SL; Nilsson MR; Robinson CV; Dobson CM; MacPhee CE
    J Mol Biol; 2006 Jul; 360(2):497-509. PubMed ID: 16774767
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein.
    Selivanova OM; Galzitskaya OV
    Biochemistry (Mosc); 2012 Nov; 77(11):1237-47. PubMed ID: 23240561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.
    Nettleton EJ; Tito P; Sunde M; Bouchard M; Dobson CM; Robinson CV
    Biophys J; 2000 Aug; 79(2):1053-65. PubMed ID: 10920035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dimethyl Sulfoxide Induced Destabilization and Disassembly of Various Structural Variants of Insulin Fibrils Monitored by Vibrational Circular Dichroism.
    Zhang G; Babenko V; Dzwolak W; Keiderling TA
    Biochemistry; 2015 Dec; 54(49):7193-202. PubMed ID: 26582046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conformational Compatibility Is Essential for Heterologous Aggregation of α-Synuclein.
    Sidhu A; Segers-Nolten I; Subramaniam V
    ACS Chem Neurosci; 2016 Jun; 7(6):719-27. PubMed ID: 26996749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The formation of spherulites by amyloid fibrils of bovine insulin.
    Krebs MR; Macphee CE; Miller AF; Dunlop IE; Dobson CM; Donald AM
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14420-4. PubMed ID: 15381766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils.
    Zako T; Sakono M; Hashimoto N; Ihara M; Maeda M
    Biophys J; 2009 Apr; 96(8):3331-40. PubMed ID: 19383476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR).
    Rizevsky S; Kurouski D
    Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of Novel Insulin Fibrils That Show Strong Cytotoxicity Under Physiological pH.
    Yoshihara H; Saito J; Tanabe A; Amada T; Asakura T; Kitagawa K; Asada S
    J Pharm Sci; 2016 Apr; 105(4):1419-26. PubMed ID: 27019958
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of insulin in amyloid fibrils.
    Nilsson MR; Dobson CM
    Protein Sci; 2003 Nov; 12(11):2637-41. PubMed ID: 14573875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of natural biopolymers on amyloid fibril formation and morphology.
    Ow SY; Bekard I; Dunstan DE
    Int J Biol Macromol; 2018 Jan; 106():30-38. PubMed ID: 28778524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding.
    Sorci M; Grassucci RA; Hahn I; Frank J; Belfort G
    Proteins; 2009 Oct; 77(1):62-73. PubMed ID: 19408310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spontaneous inter-conversion of insulin fibril chirality.
    Kurouski D; Dukor RK; Lu X; Nafie LA; Lednev IK
    Chem Commun (Camb); 2012 Mar; 48(23):2837-9. PubMed ID: 22241279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elucidation of insulin assembly at acidic and neutral pH: Characterization of low molecular weight oligomers.
    Mawhinney MT; Williams TL; Hart JL; Taheri ML; Urbanc B
    Proteins; 2017 Nov; 85(11):2096-2110. PubMed ID: 28796342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The extreme N-terminal region of human apolipoprotein A-I has a strong propensity to form amyloid fibrils.
    Adachi E; Kosaka A; Tsuji K; Mizuguchi C; Kawashima H; Shigenaga A; Nagao K; Akaji K; Otaka A; Saito H
    FEBS Lett; 2014 Jan; 588(3):389-94. PubMed ID: 24316228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational switching within individual amyloid fibrils.
    Makarava N; Ostapchenko VG; Savtchenko R; Baskakov IV
    J Biol Chem; 2009 May; 284(21):14386-95. PubMed ID: 19329794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the heat stability of amyloid-based biological activity: insights from thermal degradation of insulin fibrils.
    Surmacz-Chwedoruk W; Malka I; Bożycki Ł; Nieznańska H; Dzwolak W
    PLoS One; 2014; 9(1):e86320. PubMed ID: 24466022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.