These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 27558544)

  • 1. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress.
    Davuluri G; Allawy A; Thapaliya S; Rennison JH; Singh D; Kumar A; Sandlers Y; Van Wagoner DR; Flask CA; Hoppel C; Kasumov T; Dasarathy S
    J Physiol; 2016 Dec; 594(24):7341-7360. PubMed ID: 27558544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy.
    Kumar A; Davuluri G; Welch N; Kim A; Gangadhariah M; Allawy A; Priyadarshini A; McMullen MR; Sandlers Y; Willard B; Hoppel CL; Nagy LE; Dasarathy S
    Free Radic Biol Med; 2019 Dec; 145():284-299. PubMed ID: 31574345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-Isoleucine reverses hyperammonemia-induced myotube mitochondrial dysfunction and post-mitotic senescence.
    Kumar A; Bellar A; Mishra S; Sekar J; Welch N; Dasarathy S
    J Nutr Biochem; 2024 Jan; 123():109498. PubMed ID: 37871767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation.
    Mishra S; Welch N; Karthikeyan M; Bellar A; Musich R; Singh SS; Zhang D; Sekar J; Attaway AH; Chelluboyina AK; Lorkowski SW; Roychowdhury S; Li L; Willard B; Smith JD; Hoppel CL; Vachharajani V; Kumar A; Dasarathy S
    Aging Cell; 2023 Jul; 22(7):e13852. PubMed ID: 37101412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperammonaemia induces mitochondrial dysfunction and neuronal cell death.
    Angelova PR; Kerbert AJC; Habtesion A; Hall A; Abramov AY; Jalan R
    JHEP Rep; 2022 Aug; 4(8):100510. PubMed ID: 35845295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Mitochondrial Dysfunction in the Pathogenesis of Cisplatin-Induced Myotube Atrophy.
    Matsumoto C; Sekine H; Nahata M; Mogami S; Ohbuchi K; Fujitsuka N; Takeda H
    Biol Pharm Bull; 2022 Jun; 45(6):780-792. PubMed ID: 35400696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence.
    Kumar A; Welch N; Mishra S; Bellar A; Silva RN; Li L; Singh SS; Sharkoff M; Kerr A; Chelluboyina AK; Sekar J; Attaway AH; Hoppel C; Willard B; Davuluri G; Dasarathy S
    JCI Insight; 2021 Dec; 6(24):. PubMed ID: 34935641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8.
    Barquissau V; Capel F; Dardevet D; Feillet-Coudray C; Gallinier A; Chauvin MA; Rieusset J; Morio B
    Free Radic Biol Med; 2017 Dec; 113():267-279. PubMed ID: 29024807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity.
    Hart CR; Layec G; Trinity JD; Kwon OS; Zhao J; Reese VR; Gifford JR; Richardson RS
    Exp Physiol; 2018 Jun; 103(6):838-850. PubMed ID: 29604234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.
    Bowtell JL; Marwood S; Bruce M; Constantin-Teodosiu D; Greenhaff PL
    Sports Med; 2007; 37(12):1071-88. PubMed ID: 18027994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis.
    Davuluri G; Krokowski D; Guan BJ; Kumar A; Thapaliya S; Singh D; Hatzoglou M; Dasarathy S
    J Hepatol; 2016 Nov; 65(5):929-937. PubMed ID: 27318325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction.
    Pendleton AL; Antolic AT; Kelly AC; Davis MA; Camacho LE; Doubleday K; Anderson MJ; Langlais PR; Lynch RM; Limesand SW
    Am J Physiol Endocrinol Metab; 2020 Jul; 319(1):E67-E80. PubMed ID: 32396498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis.
    Kumar A; Davuluri G; Silva RNE; Engelen MPKJ; Ten Have GAM; Prayson R; Deutz NEP; Dasarathy S
    Hepatology; 2017 Jun; 65(6):2045-2058. PubMed ID: 28195332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.
    Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Exercise training in hypoxia prevents hypoxia induced mitochondrial DNA oxidative damage in skeletal muscle].
    Bo H; Li L; Duan FQ; Zhu J
    Sheng Li Xue Bao; 2014 Oct; 66(5):597-604. PubMed ID: 25332006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress.
    Tonkonogi M; Walsh B; Svensson M; Sahlin K
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):379-88. PubMed ID: 11034627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicorandil Affects Mitochondrial Respiratory Chain Function by Increasing Complex III Activity and ROS Production in Skeletal Muscle Mitochondria.
    Sánchez-Duarte E; Cortés-Rojo C; Sánchez-Briones LA; Campos-García J; Saavedra-Molina A; Delgado-Enciso I; López-Lemus UA; Montoya-Pérez R
    J Membr Biol; 2020 Aug; 253(4):309-318. PubMed ID: 32620983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia.
    Jamshidzadeh A; Heidari R; Abasvali M; Zarei M; Ommati MM; Abdoli N; Khodaei F; Yeganeh Y; Jafari F; Zarei A; Latifpour Z; Mardani E; Azarpira N; Asadi B; Najibi A
    Biomed Pharmacother; 2017 Feb; 86():514-520. PubMed ID: 28024286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.
    Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ
    Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.