These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27558624)

  • 1. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.
    Ceccon A; Marius Clore G; Tugarinov V
    J Biomol NMR; 2016 Sep; 66(1):1-7. PubMed ID: 27558624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy.
    Ceccon A; Tugarinov V; Bax A; Clore GM
    J Am Chem Soc; 2016 May; 138(18):5789-92. PubMed ID: 27111298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of using approximate Bloch-McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin.
    Hansen DF; Led JJ
    J Magn Reson; 2003 Aug; 163(2):215-27. PubMed ID: 12914837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Dynamics of a Protein on the Surface of Anisotropic Lipid Nanoparticles Derived from Relaxation-Based NMR Spectroscopy.
    Ceccon A; Kubatova N; Louis JM; Clore GM; Tugarinov V
    J Phys Chem B; 2022 Aug; 126(30):5646-5654. PubMed ID: 35877206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins.
    Matei E; Gronenborn AM
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):150-4. PubMed ID: 26510989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the uncertainty in exchange parameters determined from off-resonance R1ρ relaxation dispersion for systems in fast exchange.
    Bothe JR; Stein ZW; Al-Hashimi HM
    J Magn Reson; 2014 Jul; 244():18-29. PubMed ID: 24819426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy.
    John M; Headlam MJ; Dixon NE; Otting G
    J Biomol NMR; 2007 Jan; 37(1):43-51. PubMed ID: 17096205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing dynamic protein-protein interactions using differentially scaled paramagnetic relaxation enhancement.
    Yu D; Volkov AN; Tang C
    J Am Chem Soc; 2009 Dec; 131(47):17291-7. PubMed ID: 19891483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.
    Sorce DJ; Michaeli S; Garwood M
    J Magn Reson; 2006 Mar; 179(1):136-9. PubMed ID: 16298149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus-31 transverse relaxation rate measurements by NMR spectroscopy: insight into conformational exchange along the nucleic acid backbone.
    Catoire LJ
    J Biomol NMR; 2004 Feb; 28(2):179-84. PubMed ID: 14755162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy.
    Spencer RG; Fishbein KW
    J Magn Reson; 2000 Jan; 142(1):120-35. PubMed ID: 10617442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general method for determining the electron self-exchange rates of blue copper proteins by longitudinal NMR relaxation.
    Jensen MR; Hansen DF; Led JJ
    J Am Chem Soc; 2002 Apr; 124(15):4093-6. PubMed ID: 11942848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse relaxation of scalar-coupled protons.
    Segawa TF; Baishya B; Bodenhausen G
    Chemphyschem; 2010 Oct; 11(15):3343-54. PubMed ID: 20938997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.
    Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP
    J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse relaxation in the rotating frame induced by chemical exchange.
    Michaeli S; Sorce DJ; Idiyatullin D; Ugurbil K; Garwood M
    J Magn Reson; 2004 Aug; 169(2):293-9. PubMed ID: 15261625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the distance dependence of paramagnetic relaxation enhancements by CSA x DSA cross-correlation.
    Pintacuda G; Kaikkonen A; Otting G
    J Magn Reson; 2004 Dec; 171(2):233-43. PubMed ID: 15546749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.