BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27558655)

  • 21. A portable personal glucose meter method for enzyme activity detection and inhibitory activity evaluation based on alkaline phosphatase-mediated reaction.
    Zhang H; Chen GY; Qian ZM; Li WJ; Li CH; Hu YJ; Yang FQ
    Anal Bioanal Chem; 2021 Apr; 413(9):2457-2466. PubMed ID: 33674935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks.
    Wang Z; Yan Z; Wang F; Cai J; Guo L; Su J; Liu Y
    Biosens Bioelectron; 2017 Nov; 97():107-114. PubMed ID: 28582705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MiRNA Quantitation with Microelectrode Sensors Enabled by Enzymeless Electrochemical Signal Amplification.
    Wang T; Wang G; Merlin D; Viennois E
    Methods Mol Biol; 2017; 1580():249-263. PubMed ID: 28439838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells.
    Sun D; Lu J; Chen Z; Yu Y; Mo M
    Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device.
    Sen M; Ino K; Shiku H; Matsue T
    Lab Chip; 2012 Nov; 12(21):4328-35. PubMed ID: 22941152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoelectrodes: recent advances and new directions.
    Cox JT; Zhang B
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():253-72. PubMed ID: 22524228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An addressable microelectrode array for electrochemical detection.
    Lin Z; Takahashi Y; Kitagawa Y; Umemura T; Shiku H; Matsue T
    Anal Chem; 2008 Sep; 80(17):6830-3. PubMed ID: 18665613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) via a SERRS-microfluidic droplet platform.
    Sun D; Cao F; Cong L; Xu W; Chen Q; Shi W; Xu S
    Lab Chip; 2019 Jan; 19(2):335-342. PubMed ID: 30566170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper-Mediated DNA-Scaffolded Silver Nanocluster On-Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase.
    Ma JL; Yin BC; Wu X; Ye BC
    Anal Chem; 2016 Sep; 88(18):9219-25. PubMed ID: 27545717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification.
    Liu S; Wei W; Sun X; Wang L
    Biosens Bioelectron; 2016 Sep; 83():33-8. PubMed ID: 27093488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical detection of receptor-mediated endocytosis by scanning electrochemical microscopy.
    Takahashi Y; Miyamoto T; Shiku H; Ino K; Yasukawa T; Asano R; Kumagai I; Matsue T
    Phys Chem Chem Phys; 2011 Oct; 13(37):16569-73. PubMed ID: 21850302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical chip integrating scalable ring-ring electrode array to detect secreted alkaline phosphatase.
    Takeda M; Shiku H; Ino K; Matsue T
    Analyst; 2011 Dec; 136(23):4991-6. PubMed ID: 21977495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aptamer-aided target capturing with biocatalytic metal deposition: an electrochemical platform for sensitive detection of cancer cells.
    Yi Z; Li XY; Gao Q; Tang LJ; Chu X
    Analyst; 2013 Apr; 138(7):2032-7. PubMed ID: 23420020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.
    Ding L; Bond AM; Zhai J; Zhang J
    Anal Chim Acta; 2013 Oct; 797():1-12. PubMed ID: 24050664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor.
    Serra B; Morales MD; Reviejo AJ; Hall EH; Pingarrón JM
    Anal Biochem; 2005 Jan; 336(2):289-94. PubMed ID: 15620894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.
    Chung TD
    Methods Mol Biol; 2013; 1053():53-84. PubMed ID: 23860647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanokits for the electrochemical quantification of enzyme activity in single living cells.
    Pan R; Jiang D
    Methods Enzymol; 2019; 628():173-189. PubMed ID: 31668228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screen-printed microsystems for the ultrasensitive electrochemical detection of alkaline phosphatase.
    Santiago LM; Bejarano-Nosas D; Lozano-Sanchez P; Katakis I
    Analyst; 2010 Jun; 135(6):1276-81. PubMed ID: 20396818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.
    Stejskalová E; Horáková P; Vacek J; Bowater RP; Fojta M
    Anal Bioanal Chem; 2014 Jul; 406(17):4129-36. PubMed ID: 24820061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.