These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27558655)

  • 41. Electrochemical detection of protein kinase activity based on carboxypeptidase Y digestion triggered signal amplification.
    Yin H; Wang X; Guo Y; Zhou Y; Ai S
    Biosens Bioelectron; 2015 Apr; 66():77-83. PubMed ID: 25460885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.
    Tang C; Qian Z; Huang Y; Xu J; Ao H; Zhao M; Zhou J; Chen J; Feng H
    Biosens Bioelectron; 2016 Sep; 83():274-80. PubMed ID: 27132001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticles for Use in Enzyme Assays.
    Kim YP; Kim HS
    Chembiochem; 2016 Feb; 17(4):275-82. PubMed ID: 26662229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon-Ag/AgCl probes for detection of cell activity in droplets.
    Ino K; Ono K; Arai T; Takahashi Y; Shiku H; Matsue T
    Anal Chem; 2013 Apr; 85(8):3832-5. PubMed ID: 23488981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method.
    Gu S; Lu Y; Ding Y; Li L; Zhang F; Wu Q
    Anal Chim Acta; 2013 Sep; 796():68-74. PubMed ID: 24016585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.
    Zajda J; Górski Ł; Malinowska E
    Bioelectrochemistry; 2016 Jun; 109():63-9. PubMed ID: 26859430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soft microelectrode linear array for scanning electrochemical microscopy.
    Cortés-Salazar F; Momotenko D; Lesch A; Wittstock G; Girault HH
    Anal Chem; 2010 Dec; 82(24):10037-44. PubMed ID: 21090683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores.
    Chen L; Yang G; Wu P; Cai C
    Biosens Bioelectron; 2017 Oct; 96():294-299. PubMed ID: 28511112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoceria particles as catalytic amplifiers for alkaline phosphatase assays.
    Hayat A; Andreescu S
    Anal Chem; 2013 Nov; 85(21):10028-32. PubMed ID: 24053108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies.
    Lee G; Park I; Kwon K; Kwon T; Seo J; Chang WJ; Nam H; Cha GS; Choi MH; Yoon DS; Lee SW
    Biomed Microdevices; 2012 Apr; 14(2):375-84. PubMed ID: 22143877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noninvasive measurement of alkaline phosphatase activity in embryoid bodies and coculture spheroids with scanning electrochemical microscopy.
    Arai T; Nishijo T; Matsumae Y; Zhou Y; Ino K; Shiku H; Matsue T
    Anal Chem; 2013 Oct; 85(20):9647-54. PubMed ID: 24053132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymer membrane ion-selective electrodes as a convenient tool for lipases and esterases assays.
    Cieplak M; Ostaszewski R
    Prep Biochem Biotechnol; 2017 Aug; 47(7):673-677. PubMed ID: 28277945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.
    Zhang Y; Xiao J; Sun Y; Wang L; Dong X; Ren J; He W; Xiao F
    Biosens Bioelectron; 2018 Feb; 100():453-461. PubMed ID: 28963962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel electrochemical methodology for activity estimation of alkaline phosphatase based on solubility difference.
    Ino K; Kanno Y; Arai T; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Anal Chem; 2012 Sep; 84(18):7593-8. PubMed ID: 22934980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing phosphatase activity using redox active nanoparticles: a novel colorimetric approach for the detection of enzyme activity.
    Hayat A; Gonca Bulbul ; Andreescu S
    Biosens Bioelectron; 2014 Jun; 56():334-9. PubMed ID: 24531308
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ratiometric electrochemical detection of alkaline phosphatase.
    Goggins S; Naz C; Marsh BJ; Frost CG
    Chem Commun (Camb); 2015 Jan; 51(3):561-4. PubMed ID: 25413385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies.
    Kanno Y; Ino K; Shiku H; Matsue T
    Lab Chip; 2015 Dec; 15(23):4404-14. PubMed ID: 26481771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-throughput single-molecule bioassay using micro-reactor arrays with a concentration gradient of target molecules.
    Watanabe R; Komatsu T; Sakamoto S; Urano Y; Noji H
    Lab Chip; 2018 Sep; 18(18):2849-2853. PubMed ID: 30091771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker.
    Li L; Zhang L; Yu J; Ge S; Song X
    Biosens Bioelectron; 2015 Sep; 71():108-114. PubMed ID: 25897879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates.
    Li H; Sun Z; Zhong W; Hao N; Xu D; Chen HY
    Anal Chem; 2010 Jul; 82(13):5477-83. PubMed ID: 20550213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.