These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27558848)

  • 1. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides.
    Luo H; Ye H; Ng HW; Sakkiah S; Mendrick DL; Hong H
    Sci Rep; 2016 Aug; 6():32115. PubMed ID: 27558848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis.
    Luo H; Ye H; Ng H; Shi L; Tong W; Mattes W; Mendrick D; Hong H
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S9. PubMed ID: 26424483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles.
    Luo F; Gao Y; Zhu Y; Liu J
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S1. PubMed ID: 23815611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.
    Liu Z; Cui Y; Xiong Z; Nasiri A; Zhang A; Hu J
    Sci Rep; 2019 Jan; 9(1):794. PubMed ID: 30692623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules.
    Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S
    J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.
    Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J
    BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.
    Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J
    Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions.
    Xu Y; Luo C; Qian M; Huang X; Zhu S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25521198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.
    Liu G; Li D; Li Z; Qiu S; Li W; Chao CC; Yang N; Li H; Cheng Z; Song X; Cheng L; Zhang X; Wang J; Yang H; Ma K; Hou Y; Li B
    Gigascience; 2017 May; 6(5):1-11. PubMed ID: 28327987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of supertype-specific HLA class I binding peptides using support vector machines.
    Zhang GL; Bozic I; Kwoh CK; August JT; Brusic V
    J Immunol Methods; 2007 Mar; 320(1-2):143-54. PubMed ID: 17303158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APEX-pHLA: A novel method for accurate prediction of the binding between exogenous short peptides and HLA class I molecules.
    Su Z; Wu Y; Cao K; Du J; Cao L; Wu Z; Wu X; Wang X; Song Y; Wang X; Duan H
    Methods; 2024 Aug; 228():38-47. PubMed ID: 38772499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepSeqPanII: An Interpretable Recurrent Neural Network Model With Attention Mechanism for Peptide-HLA Class II Binding Prediction.
    Liu Z; Jin J; Cui Y; Xiong Z; Nasiri A; Zhao Y; Hu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2188-2196. PubMed ID: 33886473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus classification of human leukocyte antigen class II proteins.
    Saha I; Mazzocco G; Plewczynski D
    Immunogenetics; 2013 Feb; 65(2):97-105. PubMed ID: 23229472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HLA class I binding prediction via convolutional neural networks.
    Vang YS; Xie X
    Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3pHLA-score improves structure-based peptide-HLA binding affinity prediction.
    Conev A; Devaurs D; Rigo MM; Antunes DA; Kavraki LE
    Sci Rep; 2022 Jun; 12(1):10749. PubMed ID: 35750701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions.
    Bassani-Sternberg M; Gfeller D
    J Immunol; 2016 Sep; 197(6):2492-9. PubMed ID: 27511729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.