These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27558892)

  • 21. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans.
    Liu P; Shao H; Kong Y; Wang D
    J Environ Sci (China); 2020 Feb; 88():200-208. PubMed ID: 31862061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier.
    Zhao L; Dong S; Zhao Y; Shao H; Krasteva N; Wu Q; Wang D
    Ecotoxicol Environ Saf; 2019 Mar; 169():1-7. PubMed ID: 30412893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.
    Wu Q; Zhao Y; Li Y; Wang D
    Nanoscale; 2014 Oct; 6(19):11204-12. PubMed ID: 25124895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans.
    Kim Y; Jeong J; Yang J; Joo SW; Hong J; Choi J
    Toxicology; 2018 Dec; 410():83-95. PubMed ID: 30218681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds.
    Zhao Y; Yu X; Jia R; Yang R; Rui Q; Wang D
    Sci Rep; 2015 Nov; 5():17233. PubMed ID: 26611622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development.
    Marks ND; Winter AD; Gu HY; Maitland K; Gillan V; Ambroz M; Martinelli A; Laing R; MacLellan R; Towne J; Roberts B; Hanks E; Devaney E; Britton C
    Sci Rep; 2019 Nov; 9(1):17594. PubMed ID: 31772378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.
    Zhao Y; Wu Q; Wang D
    Biomaterials; 2016 Feb; 79():15-24. PubMed ID: 26686978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.
    Wu Q; Yin L; Li X; Tang M; Zhang T; Wang D
    Nanoscale; 2013 Oct; 5(20):9934-43. PubMed ID: 23986404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide.
    Ding X; Rui Q; Wang D
    Ecotoxicol Environ Saf; 2018 Nov; 163():456-464. PubMed ID: 30075448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. microRNAs involved in the control of toxicity on locomotion behavior induced by simulated microgravity stress in Caenorhabditis elegans.
    Sun L; Li W; Li D; Wang D
    Sci Rep; 2020 Oct; 10(1):17510. PubMed ID: 33060753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans.
    Zhao Y; Chen H; Yang Y; Wu Q; Wang D
    Sci Total Environ; 2020 Jan; 700():134492. PubMed ID: 31627046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coal combustion related fine particulate matter (PM
    Wu Q; Han X; Wang D; Zhao F; Wang D
    Toxicol Res (Camb); 2017 Jul; 6(4):432-441. PubMed ID: 30090511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans.
    Wang N; Liu J; Xie F; Gao X; Ye JH; Sun LY; Wei R; Ai J
    J Cell Biochem; 2015 Feb; 116(2):242-51. PubMed ID: 25186652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs.
    Zhao Y; Wu Q; Li Y; Nouara A; Jia R; Wang D
    Nanoscale; 2014 Apr; 6(8):4275-84. PubMed ID: 24614909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM
    Yang R; Rui Q; Kong L; Zhang N; Li Y; Wang X; Tao J; Tian P; Ma Y; Wei J; Li G; Wang D
    Toxicol Res (Camb); 2016 Jul; 5(4):1097-1105. PubMed ID: 30090415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of microRNAs to in vitro treatment with graphene oxide.
    Li Y; Wu Q; Zhao Y; Bai Y; Chen P; Xia T; Wang D
    ACS Nano; 2014 Mar; 8(3):2100-10. PubMed ID: 24512264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide.
    Xiao G; Chen H; Krasteva N; Liu Q; Wang D
    J Nanobiotechnology; 2018 Apr; 16(1):45. PubMed ID: 29703212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A circular RNA
    Shi L; Jia X; Guo T; Cheng L; Han X; Wu Q; Wang D
    RSC Adv; 2019 Apr; 9(24):13722-13735. PubMed ID: 35519596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure.
    Qu M; Luo L; Yang Y; Kong Y; Wang D
    Sci Total Environ; 2019 Dec; 697():134131. PubMed ID: 31476495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.