These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27558892)

  • 41. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide.
    Wu Q; Zhao Y; Fang J; Wang D
    Nanoscale; 2014 Jun; 6(11):5894-906. PubMed ID: 24756229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans.
    Zhang Y; Zhang W; Dong M
    Sci China Life Sci; 2018 Sep; 61(9):1060-1070. PubMed ID: 29948901
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response.
    Kudlow BA; Zhang L; Han M
    Mol Cell; 2012 May; 46(4):530-41. PubMed ID: 22503424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans.
    Yan B; Sun W; Shi X; Huang L; Chen L; Wang S; Yan L; Liang S; Huang H
    Vet Parasitol; 2017 Jun; 240():1-10. PubMed ID: 28576337
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans.
    Li P; Xu T; Wu S; Lei L; He D
    J Appl Toxicol; 2017 Oct; 37(10):1140-1150. PubMed ID: 28418071
    [TBL] [Abstract][Full Text] [Related]  

  • 46. mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity.
    Zhi L; Yu Y; Jiang Z; Wang D
    Sci Rep; 2017 Nov; 7(1):14560. PubMed ID: 29109437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs.
    McEwen TJ; Yao Q; Yun S; Lee CY; Bennett KL
    Dev Biol; 2016 Oct; 418(2):248-257. PubMed ID: 27521456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans.
    Shao H; Wang D
    Environ Pollut; 2020 Mar; 258():113649. PubMed ID: 31767235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. miR-58 family and TGF-β pathways regulate each other in Caenorhabditis elegans.
    de Lucas MP; Sáez AG; Lozano E
    Nucleic Acids Res; 2015 Nov; 43(20):9978-93. PubMed ID: 26400166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans.
    Qu M; Li D; Qiu Y; Wang D
    Sci Total Environ; 2020 Jul; 724():138378. PubMed ID: 32272418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans.
    Rudgalvyte M; VanDuyn N; Aarnio V; Heikkinen L; Peltonen J; Lakso M; Nass R; Wong G
    Toxicol Lett; 2013 Oct; 222(2):189-96. PubMed ID: 23872261
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benzo-α-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA.
    Wu H; Huang C; Taki FA; Zhang Y; Dobbins DL; Li L; Yan H; Pan X
    Chemosphere; 2015 Nov; 139():496-503. PubMed ID: 26291679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SMK-1, an essential regulator of DAF-16-mediated longevity.
    Wolff S; Ma H; Burch D; Maciel GA; Hunter T; Dillin A
    Cell; 2006 Mar; 124(5):1039-53. PubMed ID: 16530049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans.
    Côa F; Delite FS; Strauss M; Martinez DST
    NanoImpact; 2022 Jul; 27():100413. PubMed ID: 35940564
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradome sequencing reveals an endogenous microRNA target in C. elegans.
    Park JH; Ahn S; Kim S; Lee J; Nam JW; Shin C
    FEBS Lett; 2013 Apr; 587(7):964-9. PubMed ID: 23485825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. microRNAs Involved in the Control of Innate Immunity in Candida Infected Caenorhabditis elegans.
    Sun L; Zhi L; Shakoor S; Liao K; Wang D
    Sci Rep; 2016 Oct; 6():36036. PubMed ID: 27796366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An intestinal microRNA modulates the homeostatic adaptation to chronic oxidative stress in
    Kato M; Kashem MA; Cheng C
    Aging (Albany NY); 2016 Sep; 8(9):1979-2005. PubMed ID: 27623524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. mir-67 regulates P. aeruginosa avoidance behavior in C. elegans.
    Ma YC; Zhang L; Dai LL; Khan RU; Zou CG
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):120-125. PubMed ID: 29050943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Epigenetic response to nanopolystyrene in germline of nematode Caenorhabditis elegans.
    Yang Y; Wu Q; Wang D
    Ecotoxicol Environ Saf; 2020 Dec; 206():111404. PubMed ID: 33002821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans.
    Dou T; Chen J; Wang R; Pu X; Wu H; Zhao Y
    Ecotoxicol Environ Saf; 2022 Dec; 248():114289. PubMed ID: 36379072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.