These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27559001)

  • 41. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human hepatocytes loaded in 3D bioprinting generate mini-liver.
    Zhong C; Xie HY; Zhou L; Xu X; Zheng SS
    Hepatobiliary Pancreat Dis Int; 2016 Oct; 15(5):512-518. PubMed ID: 27733321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.
    Xiong R; Zhang Z; Chai W; Huang Y; Chrisey DB
    Biofabrication; 2015 Dec; 7(4):045011. PubMed ID: 26693735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro].
    Yu HY; Ma DD; Wu BL
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):668-672. PubMed ID: 28539292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D micro-organisation printing of mammalian cells to generate biological tissues.
    Jeffries GDM; Xu S; Lobovkina T; Kirejev V; Tusseau F; Gyllensten C; Singh AK; Karila P; Moll L; Orwar O
    Sci Rep; 2020 Nov; 10(1):19529. PubMed ID: 33173097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.
    Arai K; Yoshida T; Okabe M; Goto M; Mir TA; Soko C; Tsukamoto Y; Akaike T; Nikaido T; Zhou K; Nakamura M
    J Biomed Mater Res A; 2017 Jun; 105(6):1583-1592. PubMed ID: 27643636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing vascular supportive albumen-rich composite bioink for organ 3D printing.
    Liu S; Zhang H; Hu Q; Shen Z; Rana D; Ramalingam M
    J Mech Behav Biomed Mater; 2020 Apr; 104():103642. PubMed ID: 32174400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomatrices and biomaterials for future developments of bioprinting and biofabrication.
    Nakamura M; Iwanaga S; Henmi C; Arai K; Nishiyama Y
    Biofabrication; 2010 Mar; 2(1):014110. PubMed ID: 20811125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishing a 3D In Vitro Hepatic Model Mimicking Physiologically Relevant to In Vivo State.
    Kang HK; Sarsenova M; Kim DH; Kim MS; Lee JY; Sung EA; Kook MG; Kim NG; Choi SW; Ogay V; Kang KS
    Cells; 2021 May; 10(5):. PubMed ID: 34065411
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
    Ma X; Qu X; Zhu W; Li YS; Yuan S; Zhang H; Liu J; Wang P; Lai CS; Zanella F; Feng GS; Sheikh F; Chien S; Chen S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2206-11. PubMed ID: 26858399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.