These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27559001)

  • 81. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 82. 3D bioprinting of tissues and organs.
    Murphy SV; Atala A
    Nat Biotechnol; 2014 Aug; 32(8):773-85. PubMed ID: 25093879
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.
    Xu Y; Wang X
    Biotechnol Bioeng; 2015 Aug; 112(8):1683-95. PubMed ID: 25727058
    [TBL] [Abstract][Full Text] [Related]  

  • 86. New strategy for enhancing in situ cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing.
    Koo Y; Kim G
    Biofabrication; 2016 May; 8(2):025010. PubMed ID: 27203798
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 88. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics.
    Choi YJ; Yi HG; Kim SW; Cho DW
    Theranostics; 2017; 7(12):3118-3137. PubMed ID: 28839468
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Response differences of HepG2 and Primary Mouse Hepatocytes to morphological changes in electrospun PCL scaffolds.
    Bate TSR; Gadd VL; Forbes SJ; Callanan A
    Sci Rep; 2021 Feb; 11(1):3059. PubMed ID: 33542251
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Three-dimensional bioprinting is not only about cell-laden structures.
    Zhang HB; Xing TL; Yin RX; Shi Y; Yang SM; Zhang WJ
    Chin J Traumatol; 2016 Aug; 19(4):187-92. PubMed ID: 27578372
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Human hepatocytes loaded in 3D bioprinting generate mini-liver.
    Zhong C; Xie HY; Zhou L; Xu X; Zheng SS
    Hepatobiliary Pancreat Dis Int; 2016 Oct; 15(5):512-518. PubMed ID: 27733321
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure.
    Kim Y; Kang K; Jeong J; Paik SS; Kim JS; Park SA; Kim WD; Park J; Choi D
    Ann Surg Treat Res; 2017 Feb; 92(2):67-72. PubMed ID: 28203553
    [TBL] [Abstract][Full Text] [Related]  

  • 93. 3D printing of novel osteochondral scaffolds with graded microstructure.
    Nowicki MA; Castro NJ; Plesniak MW; Zhang LG
    Nanotechnology; 2016 Oct; 27(41):414001. PubMed ID: 27606933
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Recent advances in bioprinting techniques: approaches, applications and future prospects.
    Li J; Chen M; Fan X; Zhou H
    J Transl Med; 2016 Sep; 14():271. PubMed ID: 27645770
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Advances in the research of application of hydrogels in three-dimensional bioprinting].
    Yang J; Zhao Y; Li HH; Zhu SH
    Zhonghua Shao Shang Za Zhi; 2016 Aug; 32(8):505-7. PubMed ID: 27562161
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
    Dubbin K; Hori Y; Lewis KK; Heilshorn SC
    Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Solid organ fabrication: comparison of decellularization to 3D bioprinting.
    Jung JP; Bhuiyan DB; Ogle BM
    Biomater Res; 2016; 20(1):27. PubMed ID: 27583168
    [TBL] [Abstract][Full Text] [Related]  

  • 98. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes.
    Vijayavenkataraman S; Lu WF; Fuh JY
    Biofabrication; 2016 Sep; 8(3):032001. PubMed ID: 27606434
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bioprinting and Differentiation of Stem Cells.
    Irvine SA; Venkatraman SS
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27617991
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Multifunctional 3D printing of heterogeneous hydrogel structures.
    Nadernezhad A; Khani N; Skvortsov GA; Toprakhisar B; Bakirci E; Menceloglu Y; Unal S; Koc B
    Sci Rep; 2016 Sep; 6():33178. PubMed ID: 27630079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.