These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 27559066)
1. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Brothers CJ; Harianto J; McClintock JB; Byrne M Proc Biol Sci; 2016 Aug; 283(1837):. PubMed ID: 27559066 [TBL] [Abstract][Full Text] [Related]
2. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K; Dworjanyn SA; Byrne M Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [TBL] [Abstract][Full Text] [Related]
3. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. Carey N; Harianto J; Byrne M J Exp Biol; 2016 Apr; 219(Pt 8):1178-86. PubMed ID: 26896541 [TBL] [Abstract][Full Text] [Related]
4. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Hardy NA; Byrne M Mar Environ Res; 2014 Dec; 102():78-87. PubMed ID: 25115741 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter. Leite Figueiredo DA; Branco PC; Dos Santos DA; Emerenciano AK; Iunes RS; Shimada Borges JC; Machado Cunha da Silva JR Aquat Toxicol; 2016 Nov; 180():84-94. PubMed ID: 27684601 [TBL] [Abstract][Full Text] [Related]
6. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA; Byrne M Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209 [TBL] [Abstract][Full Text] [Related]
7. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Collard M; De Ridder C; David B; Dehairs F; Dubois P Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127 [TBL] [Abstract][Full Text] [Related]
8. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Karelitz SE; Uthicke S; Foo SA; Barker MF; Byrne M; Pecorino D; Lamare MD Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050 [TBL] [Abstract][Full Text] [Related]
9. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate. Mos B; Dworjanyn SA; Mamo LT; Kelaher BP Sci Total Environ; 2019 Jan; 646():1349-1358. PubMed ID: 30235620 [TBL] [Abstract][Full Text] [Related]
10. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499 [TBL] [Abstract][Full Text] [Related]
11. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related]
12. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification. García E; Hernández JC; Clemente S Mar Environ Res; 2018 Aug; 139():35-45. PubMed ID: 29753493 [TBL] [Abstract][Full Text] [Related]
13. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Byrne M; Ho M; Selvakumaraswamy P; Nguyen HD; Dworjanyn SA; Davis AR Proc Biol Sci; 2009 May; 276(1663):1883-8. PubMed ID: 19324767 [TBL] [Abstract][Full Text] [Related]
14. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [TBL] [Abstract][Full Text] [Related]
15. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
16. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879 [TBL] [Abstract][Full Text] [Related]
17. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva. Mos B; Kaposi KL; Rose AL; Kelaher B; Dworjanyn SA Environ Pollut; 2017 Sep; 228():190-200. PubMed ID: 28535490 [TBL] [Abstract][Full Text] [Related]
18. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO Migliaccio O; Pinsino A; Maffioli E; Smith AM; Agnisola C; Matranga V; Nonnis S; Tedeschi G; Byrne M; Gambi MC; Palumbo A Sci Total Environ; 2019 Jul; 672():938-950. PubMed ID: 30981169 [TBL] [Abstract][Full Text] [Related]
19. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories. Byrne M; Przeslawski R Integr Comp Biol; 2013 Oct; 53(4):582-96. PubMed ID: 23697893 [TBL] [Abstract][Full Text] [Related]