These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27559135)

  • 1. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast.
    Belagal P; Normand C; Shukla A; Wang R; Léger-Silvestre I; Dez C; Bhargava P; Gadal O
    Mol Biol Cell; 2016 Oct; 27(20):3164-3177. PubMed ID: 27559135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
    Legros P; Malapert A; Niinuma S; Bernard P; Vanoosthuyse V
    PLoS Genet; 2014 Nov; 10(11):e1004794. PubMed ID: 25392932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial organization of transcription by RNA polymerase III.
    Haeusler RA; Engelke DR
    Nucleic Acids Res; 2006; 34(17):4826-36. PubMed ID: 16971453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global genome organization mediated by RNA polymerase III-transcribed genes in fission yeast.
    Iwasaki O; Noma K
    Gene; 2012 Feb; 493(2):195-200. PubMed ID: 21195141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization.
    Bystricky K; Laroche T; van Houwe G; Blaszczyk M; Gasser SM
    J Cell Biol; 2005 Jan; 168(3):375-87. PubMed ID: 15684028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast RNA polymerase III transcription factors and effectors.
    Acker J; Conesa C; Lefebvre O
    Biochim Biophys Acta; 2013; 1829(3-4):283-95. PubMed ID: 23063749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation.
    Ferrari R; Rivetti C; Acker J; Dieci G
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13442-7. PubMed ID: 15347814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes.
    Asif-Laidin A; Conesa C; Bonnet A; Grison C; Adhya I; Menouni R; Fayol H; Palmic N; Acker J; Lesage P
    EMBO J; 2020 Sep; 39(17):e104337. PubMed ID: 32677087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly into snoRNP controls 5'-end maturation of a box C/D snoRNA in Saccharomyces cerevisiae.
    Preti M; Guffanti E; Valitutto E; Dieci G
    Biochem Biophys Res Commun; 2006 Dec; 351(2):468-73. PubMed ID: 17064667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide location of yeast RNA polymerase III transcription machinery.
    Harismendy O; Gendrel CG; Soularue P; Gidrol X; Sentenac A; Werner M; Lefebvre O
    EMBO J; 2003 Sep; 22(18):4738-47. PubMed ID: 12970186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1.
    Oficjalska-Pham D; Harismendy O; Smagowicz WJ; Gonzalez de Peredo A; Boguta M; Sentenac A; Lefebvre O
    Mol Cell; 2006 Jun; 22(5):623-32. PubMed ID: 16762835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III.
    Vernekar DV; Bhargava P
    Biochim Biophys Acta; 2015 Nov; 1849(11):1340-53. PubMed ID: 26423792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional model of the yeast genome.
    Duan Z; Andronescu M; Schutz K; McIlwain S; Kim YJ; Lee C; Shendure J; Fields S; Blau CA; Noble WS
    Nature; 2010 May; 465(7296):363-7. PubMed ID: 20436457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Analysis of Spatial Distributions of All tRNA Genes in Budding Yeast.
    Tokuda N
    Biophys J; 2020 May; 118(9):2181-2192. PubMed ID: 31951810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor TFIIIB and transcription by RNA polymerase III.
    Kassavetis GA; Geiduschek EP
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1082-7. PubMed ID: 17073756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of RNA polymerase III-transcribed genes in eukaryotic genomes.
    Dieci G; Conti A; Pagano A; Carnevali D
    Biochim Biophys Acta; 2013; 1829(3-4):296-305. PubMed ID: 23041497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of rRNA genes and nucleolus formation at ectopic chromosomal sites in the yeast Saccharomyces cerevisiae.
    Oakes ML; Johzuka K; Vu L; Eliason K; Nomura M
    Mol Cell Biol; 2006 Aug; 26(16):6223-38. PubMed ID: 16880531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase III transcription control elements: themes and variations.
    Orioli A; Pascali C; Pagano A; Teichmann M; Dieci G
    Gene; 2012 Feb; 493(2):185-94. PubMed ID: 21712079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans.
    Ikegami K; Lieb JD
    Mol Cell; 2013 Sep; 51(6):840-9. PubMed ID: 24011592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.