These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 27559179)

  • 21. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes.
    Carlson BA; Gallant JR
    J Neurogenet; 2013 Sep; 27(3):106-29. PubMed ID: 23802152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disembodying the invisible: electrocommunication and social interactions by passive reception of a moving playback signal.
    Worm M; Kirschbaum F; von der Emde G
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feature extraction by burst-like spike patterns in multiple sensory maps.
    Metzner W; Koch C; Wessel R; Gabbiani F
    J Neurosci; 1998 Mar; 18(6):2283-300. PubMed ID: 9482813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
    Pereira AC; Rodríguez-Cattáneo A; Caputi AA
    J Physiol Paris; 2014; 108(2-3):71-83. PubMed ID: 25088503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pauses during communication release behavioral habituation through recovery from synaptic depression.
    Kohashi T; Lube AJ; Yang JH; Roberts-Gaddipati PS; Carlson BA
    Curr Biol; 2021 Jul; 31(14):3145-3152.e3. PubMed ID: 34043948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain.
    Metzner W; Heiligenberg W
    J Comp Physiol A; 1991 Aug; 169(2):135-50. PubMed ID: 1748973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.
    Aumentado-Armstrong T; Metzen MG; Sproule MK; Chacron MJ
    PLoS Comput Biol; 2015 Oct; 11(10):e1004430. PubMed ID: 26474395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish.
    Vonderschen K; Chacron MJ
    J Neurophysiol; 2011 Dec; 106(6):3102-18. PubMed ID: 21940609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear response properties of combination-sensitive electrosensory neurons in the midbrain of Gymnarchus niloticus.
    Carlson BA; Kawasaki M
    J Neurosci; 2004 Sep; 24(37):8039-48. PubMed ID: 15371504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of temporal-pattern sensitive neurons in the midbrain of weakly electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Physiol Paris; 2002; 96(5-6):531-7. PubMed ID: 14692500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation.
    Roberts PD; Bell CC
    J Comput Neurosci; 2000; 9(1):67-83. PubMed ID: 10946993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of sensing behavior on a latency code.
    Sawtell NB; Williams A; Roberts PD; von der Emde G; Bell CC
    J Neurosci; 2006 Aug; 26(32):8221-34. PubMed ID: 16899717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
    Kennedy A; Wayne G; Kaifosh P; Alviña K; Abbott LF; Sawtell NB
    Nat Neurosci; 2014 Mar; 17(3):416-22. PubMed ID: 24531306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish.
    Fukutomi M; Carlson BA
    Curr Biol; 2023 Aug; 33(16):3350-3359.e4. PubMed ID: 37490922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.