These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 27559338)
1. Trichome-Related Mutants Provide a New Perspective on Multicellular Trichome Initiation and Development in Cucumber (Cucumis sativus L). Liu X; Bartholomew E; Cai Y; Ren H Front Plant Sci; 2016; 7():1187. PubMed ID: 27559338 [TBL] [Abstract][Full Text] [Related]
2. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. Pan Y; Bo K; Cheng Z; Weng Y BMC Plant Biol; 2015 Dec; 15():302. PubMed ID: 26714637 [TBL] [Abstract][Full Text] [Related]
3. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Wang YL; Nie JT; Chen HM; Guo CL; Pan J; He HL; Pan JS; Cai R Theor Appl Genet; 2016 Feb; 129(2):305-16. PubMed ID: 26518574 [TBL] [Abstract][Full Text] [Related]
4. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. Zhao JL; Pan JS; Guan Y; Zhang WW; Bie BB; Wang YL; He HL; Lian HL; Cai R J Integr Plant Biol; 2015 Nov; 57(11):925-35. PubMed ID: 25735194 [TBL] [Abstract][Full Text] [Related]
5. Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. Pan J; Zhang L; Chen G; Wen H; Chen Y; Du H; Zhao J; He H; Lian H; Chen H; Shi J; Cai R; Wang G; Pan J Hortic Res; 2021 Feb; 8(1):21. PubMed ID: 33518711 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus. Zhao JL; Wang YL; Yao DQ; Zhu WY; Chen L; He HL; Pan JS; Cai R Mol Genet Genomics; 2015 Oct; 290(5):2007-18. PubMed ID: 25952908 [TBL] [Abstract][Full Text] [Related]
7. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. Li Q; Cao C; Zhang C; Zheng S; Wang Z; Wang L; Ren Z J Exp Bot; 2015 May; 66(9):2515-26. PubMed ID: 25740926 [TBL] [Abstract][Full Text] [Related]
8. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber. Du H; Wang G; Pan J; Chen Y; Xiao T; Zhang L; Zhang K; Wen H; Xiong L; Yu Y; He H; Pan J; Cai R J Exp Bot; 2020 Oct; 71(20):6297-6310. PubMed ID: 32710537 [TBL] [Abstract][Full Text] [Related]
9. A New Glabrous Gene (csgl3) Identified in Trichome Development in Cucumber (Cucumis sativus L.). Cui JY; Miao H; Ding LH; Wehner TC; Liu PN; Wang Y; Zhang SP; Gu XF PLoS One; 2016; 11(2):e0148422. PubMed ID: 26845560 [TBL] [Abstract][Full Text] [Related]
10. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. Zhang Y; Shen J; Bartholomew ES; Dong M; Chen S; Yin S; Zhai X; Feng Z; Ren H; Liu X Plant J; 2021 May; 106(3):753-765. PubMed ID: 33577109 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Zhao JL; Pan JS; Guan Y; Nie JT; Yang JJ; Qu ML; He HL; Cai R Genomics; 2015 May; 105(5-6):296-303. PubMed ID: 25666662 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). Chen C; Liu M; Jiang L; Liu X; Zhao J; Yan S; Yang S; Ren H; Liu R; Zhang X J Exp Bot; 2014 Sep; 65(17):4943-58. PubMed ID: 24962999 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3. Hung FY; Chen JH; Feng YR; Lai YC; Yang S; Wu K Plant J; 2020 Aug; 103(5):1735-1743. PubMed ID: 32445267 [TBL] [Abstract][Full Text] [Related]
14. A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). Zhang L; Lv D; Pan J; Zhang K; Wen H; Chen Y; Du H; He H; Cai R; Pan J; Wang G BMC Plant Biol; 2021 Apr; 21(1):182. PubMed ID: 33863289 [TBL] [Abstract][Full Text] [Related]
15. The WD-Repeat Protein CsTTG1 Regulates Fruit Wart Formation through Interaction with the Homeodomain-Leucine Zipper I Protein Mict. Chen C; Yin S; Liu X; Liu B; Yang S; Xue S; Cai Y; Black K; Liu H; Dong M; Zhang Y; Zhao B; Ren H Plant Physiol; 2016 Jun; 171(2):1156-68. PubMed ID: 27208299 [TBL] [Abstract][Full Text] [Related]
16. SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. Gao Y; Gong X; Cao W; Zhao J; Fu L; Wang X; Schumaker KS; Guo Y J Integr Plant Biol; 2008 Jul; 50(7):906-17. PubMed ID: 18713401 [TBL] [Abstract][Full Text] [Related]
17. A SNP Mutation in Homeodomain-DDT (HD-DDT) Transcription Factor Results in Yang Z; Song M; Cheng F; Zhang M; Davoudi M; Chen J; Lou Q Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680876 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic and functional analysis provides molecular insights into multicellular trichome development. Dong M; Xue S; Bartholomew ES; Zhai X; Sun L; Xu S; Zhang Y; Yin S; Ma W; Chen S; Feng Z; Geng C; Li X; Liu X; Ren H Plant Physiol; 2022 May; 189(1):301-314. PubMed ID: 35171294 [TBL] [Abstract][Full Text] [Related]
19. Molecular Mechanisms of Plant Trichome Development. Han G; Li Y; Yang Z; Wang C; Zhang Y; Wang B Front Plant Sci; 2022; 13():910228. PubMed ID: 35720574 [TBL] [Abstract][Full Text] [Related]
20. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Yoshida Y; Sano R; Wada T; Takabayashi J; Okada K Development; 2009 Mar; 136(6):1039-48. PubMed ID: 19234066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]