These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27559339)

  • 1. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation.
    Zhai S; Xia X; He Z
    Front Plant Sci; 2016; 7():1197. PubMed ID: 27559339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and molecular basis of carotenoid metabolism in cereals.
    Niaz M; Zhang B; Zhang Y; Yan X; Yuan M; Cheng Y; Lv G; Fadlalla T; Zhao L; Sun C; Chen F
    Theor Appl Genet; 2023 Mar; 136(3):63. PubMed ID: 36939900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K; Govindaraj M; Karthikeyan A; Shobhana VG; Warkentin TD
    Front Genet; 2020; 11():414. PubMed ID: 32547594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Loci Controlling Carotenoid Biosynthesis in Diverse Tropical Maize Lines.
    Azmach G; Menkir A; Spillane C; Gedil M
    G3 (Bethesda); 2018 Mar; 8(3):1049-1065. PubMed ID: 29378820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains.
    Qin X; Fischer K; Yu S; Dubcovsky J; Tian L
    BMC Plant Biol; 2016 Jul; 16(1):155. PubMed ID: 27405473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies.
    Cruet-Burgos C; Morris GP; Rhodes DH
    BMC Plant Biol; 2023 Mar; 23(1):165. PubMed ID: 36977987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels.
    Owens BF; Lipka AE; Magallanes-Lundback M; Tiede T; Diepenbrock CH; Kandianis CB; Kim E; Cepela J; Mateos-Hernandez M; Buell CR; Buckler ES; DellaPenna D; Gore MA; Rocheford T
    Genetics; 2014 Dec; 198(4):1699-716. PubMed ID: 25258377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoids in Cereal Food Crops: Composition and Retention throughout Grain Storage and Food Processing.
    Trono D
    Plants (Basel); 2019 Nov; 8(12):. PubMed ID: 31795124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds.
    Sun T; Zhu Q; Wei Z; Owens LA; Fish T; Kim H; Thannhauser TW; Cahoon EB; Li L
    aBIOTECH; 2021 Sep; 2(3):191-214. PubMed ID: 36303886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.
    Wang C; Zeng J; Li Y; Hu W; Chen L; Miao Y; Deng P; Yuan C; Ma C; Chen X; Zang M; Wang Q; Li K; Chang J; Wang Y; Yang G; He G
    J Exp Bot; 2014 Jun; 65(9):2545-56. PubMed ID: 24692648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification.
    Cruet-Burgos C; Rhodes DH
    BMC Genomics; 2023 May; 24(1):233. PubMed ID: 37138226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize provitamin a carotenoids, current resources, and future metabolic engineering challenges.
    Wurtzel ET; Cuttriss A; Vallabhaneni R
    Front Plant Sci; 2012; 3():29. PubMed ID: 22645578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway.
    Diretto G; Al-Babili S; Tavazza R; Papacchioli V; Beyer P; Giuliano G
    PLoS One; 2007 Apr; 2(4):e350. PubMed ID: 17406674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains.
    Chettry U; Chrungoo NK
    Brief Funct Genomics; 2020 Jul; 19(4):324-335. PubMed ID: 32240289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Provitamin A Biofortification of Durum Wheat through a TILLING Approach.
    Sestili F; Garcia-Molina MD; Gambacorta G; Beleggia R; Botticella E; De Vita P; Savatin DV; Masci S; Lafiandra D
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards carotenoid biofortification in wheat: identification of XAT-7A1, a multicopy tandem gene responsible for carotenoid esterification in durum wheat.
    Rodríguez-Suárez C; Requena-Ramírez MD; Hornero-Méndez D; Atienza SG
    BMC Plant Biol; 2023 Sep; 23(1):412. PubMed ID: 37674126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid biofortification in crop plants: citius, altius, fortius.
    Zheng X; Giuliano G; Al-Babili S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Nov; 1865(11):158664. PubMed ID: 32068105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carotenoid dioxygenase gene family in maize, sorghum, and rice.
    Vallabhaneni R; Bradbury LM; Wurtzel ET
    Arch Biochem Biophys; 2010 Dec; 504(1):104-11. PubMed ID: 20670614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The breeder's tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes.
    Rodríguez-Suárez C; Requena-Ramírez MD; Hornero-Méndez D; Atienza SG
    Methods Enzymol; 2022; 671():99-125. PubMed ID: 35878995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Role of
    Yu S; Tian L
    Front Nutr; 2021; 8():740286. PubMed ID: 34568408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.