These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27559679)

  • 1. A rapid and automated relocation method of an AFM probe for high-resolution imaging.
    Zhou P; Yu H; Shi J; Jiao N; Wang Z; Wang Y; Liu L
    Nanotechnology; 2016 Sep; 27(39):395705. PubMed ID: 27559679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of atomic force microscopy image using compressed sensing.
    Han G; Lin B; Lin Y
    Micron; 2018 Feb; 105():1-10. PubMed ID: 29132029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.
    Onishi K; Guo H; Nagano S; Fujita D
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i30. PubMed ID: 25359832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach for repeated tip-sample relocation for AFM imaging of nano and micro sized particles and cells in liquid environment.
    Abu Quba AA; Schaumann GE; Karagulyan M; Diehl D
    Ultramicroscopy; 2020 Apr; 211():112945. PubMed ID: 32006745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large-sample atomic force microscope observing in both air and liquid.
    Fu X; Zhang D; Zhang H; Xie Z
    Microsc Res Tech; 2011 Nov; 74(11):1058-61. PubMed ID: 21484944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging.
    Yan Y; Wu Y; Zou Q; Su C
    Rev Sci Instrum; 2008 Jul; 79(7):073704. PubMed ID: 18681705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device.
    Iwata F; Ohashi Y; Ishisaki I; Picco LM; Ushiki T
    Ultramicroscopy; 2013 Oct; 133():88-94. PubMed ID: 23933597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents.
    Mekid S; Bashmal S; Ouakad HM
    Recent Pat Nanotechnol; 2016; 10(1):44-58. PubMed ID: 27018272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging.
    Soltani Bozchalooi I; Careaga Houck A; AlGhamdi JM; Youcef-Toumi K
    Ultramicroscopy; 2016 Jan; 160():213-224. PubMed ID: 26547505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging.
    Zhang T; Yu H; Shi J; Wang X; Luo H; Lin D; Liu Z; Su C; Wang Y; Liu L
    Adv Sci (Weinh); 2022 Apr; 9(12):e2103902. PubMed ID: 35224895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-diffraction nano manipulation using STED AFM.
    Chacko JV; Canale C; Harke B; Diaspro A
    PLoS One; 2013; 8(6):e66608. PubMed ID: 23799123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active control of acoustics-caused nano-vibration in atomic force microscope imaging.
    Yi S; Li T; Zou Q
    Ultramicroscopy; 2018 Dec; 195():101-110. PubMed ID: 30218905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput atomic force microscopes operating in parallel.
    Sadeghian H; Herfst R; Dekker B; Winters J; Bijnagte T; Rijnbeek R
    Rev Sci Instrum; 2017 Mar; 88(3):033703. PubMed ID: 28372370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact CCD-monitored atomic force microscope with optical vision and improved performances.
    Mingyue L; Haijun Z; Dongxian Z
    Microsc Res Tech; 2013 Sep; 76(9):931-5. PubMed ID: 23801452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ observation and relocation method of nanomaterial samples based on microscope systems.
    Zeng L; Wu A; Wang Y; Pu S; Ding J
    Microsc Res Tech; 2012 Feb; 75(2):138-44. PubMed ID: 21761495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation.
    Zhang T; Yu H; Li P; Wang X; Wang F; Shi J; Liu Z; Yu P; Yang W; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48093-48100. PubMed ID: 32960563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping.
    Lu H; Wen Y; Zhang H; Xie H; Shen Y
    Ultramicroscopy; 2019 Jan; 196():83-87. PubMed ID: 30300820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.
    Ding H; Shi C; Ma L; Yang Z; Wang M; Wang Y; Chen T; Sun L; Toshio F
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.