These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27559751)

  • 1. Development of an Integrated Pipeline for Profiling Microbial Proteins from Mouse Fecal Samples by LC-MS/MS.
    Wu J; Zhu J; Yin H; Liu X; An M; Pudlo NA; Martens EC; Chen GY; Lubman DM
    J Proteome Res; 2016 Oct; 15(10):3635-3642. PubMed ID: 27559751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the impact of protein extraction methods for human gut metaproteomics.
    Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D
    J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Lysis Approach Enables Selective Extraction of Taxon-Specific Proteins for Gut Metaproteomics.
    Wang J; Zhang X; Li L; Ning Z; Mayne J; Schmitt-Ulms C; Walker K; Cheng K; Figeys D
    Anal Chem; 2020 Apr; 92(7):5379-5386. PubMed ID: 32096399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A straightforward and efficient analytical pipeline for metaproteome characterization.
    Tanca A; Palomba A; Pisanu S; Deligios M; Fraumene C; Manghina V; Pagnozzi D; Addis MF; Uzzau S
    Microbiome; 2014; 2(1):49. PubMed ID: 25516796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of DNA extraction methods for human gut microbial community profiling.
    Lim MY; Song EJ; Kim SH; Lee J; Nam YD
    Syst Appl Microbiol; 2018 Mar; 41(2):151-157. PubMed ID: 29305057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces.
    Baniasad M; Kim Y; Shaffer M; Sabag-Daigle A; Leleiwi I; Daly RA; Ahmer BMM; Wrighton KC; Wysocki VH
    Anal Bioanal Chem; 2022 Mar; 414(7):2317-2331. PubMed ID: 35106611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome.
    Nalpas N; Hoyles L; Anselm V; Ganief T; Martinez-Gili L; Grau C; Droste-Borel I; Davidovic L; Altafaj X; Dumas ME; Macek B
    Gut Microbes; 2021; 13(1):1994836. PubMed ID: 34763597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of an in vitro gut microbiome biotransformation platform with chlorogenic acid as model compound: From fecal sample to biotransformation product identification.
    Mortelé O; Iturrospe E; Breynaert A; Verdickt E; Xavier BB; Lammens C; Malhotra-Kumar S; Jorens PG; Pieters L; van Nuijs ALN; Hermans N
    J Pharm Biomed Anal; 2019 Oct; 175():112768. PubMed ID: 31398630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample Processing for Metaproteomic Analysis of Human Gut Microbiota.
    García-Durán C; Martínez-López R; Monteoliva L; Gil C
    Methods Mol Biol; 2022; 2420():53-61. PubMed ID: 34905165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.
    Zhang X; Ning Z; Mayne J; Moore JI; Li J; Butcher J; Deeke SA; Chen R; Chiang CK; Wen M; Mack D; Stintzi A; Figeys D
    Microbiome; 2016 Jun; 4(1):31. PubMed ID: 27343061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota.
    Tanca A; Palomba A; Pisanu S; Addis MF; Uzzau S
    Proteomics; 2015 Oct; 15(20):3474-85. PubMed ID: 25677681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling.
    Lau JT; Whelan FJ; Herath I; Lee CH; Collins SM; Bercik P; Surette MG
    Genome Med; 2016 Jul; 8(1):72. PubMed ID: 27363992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation.
    Szopinska JW; Gresse R; van der Marel S; Boekhorst J; Lukovac S; van Swam I; Franke B; Timmerman H; Belzer C; Arias Vasquez A
    BMC Microbiol; 2018 Sep; 18(1):110. PubMed ID: 30189859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.
    Xu W; Chen D; Wang N; Zhang T; Zhou R; Huan T; Lu Y; Su X; Xie Q; Li L; Li L
    Anal Chem; 2015 Jan; 87(2):829-36. PubMed ID: 25486321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metaproteomics of fecal samples of Crohn's disease and Ulcerative Colitis.
    Lehmann T; Schallert K; Vilchez-Vargas R; Benndorf D; Püttker S; Sydor S; Schulz C; Bechmann L; Canbay A; Heidrich B; Reichl U; Link A; Heyer R
    J Proteomics; 2019 Jun; 201():93-103. PubMed ID: 31009805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.
    Mayers MD; Moon C; Stupp GS; Su AI; Wolan DW
    J Proteome Res; 2017 Feb; 16(2):1014-1026. PubMed ID: 28052195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of five assays for DNA extraction from bacterial cells in human faecal samples.
    Gryp T; Glorieux G; Joossens M; Vaneechoutte M
    J Appl Microbiol; 2020 Aug; 129(2):378-388. PubMed ID: 32034968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry.
    Wang A; Fekete EEF; Creskey M; Cheng K; Ning Z; Pfeifle A; Li X; Figeys D; Zhang X
    Microbiome Res Rep; 2024; 3(3):39. PubMed ID: 39421247
    [No Abstract]   [Full Text] [Related]  

  • 19. Triflic Acid Treatment Enables LC-MS/MS Analysis of Insoluble Bacterial Biomass.
    Wang AY; Thuy-Boun PS; Stupp GS; Su AI; Wolan DW
    J Proteome Res; 2018 Sep; 17(9):2978-2986. PubMed ID: 30019906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice.
    Wong SH; Zhao L; Zhang X; Nakatsu G; Han J; Xu W; Xiao X; Kwong TNY; Tsoi H; Wu WKK; Zeng B; Chan FKL; Sung JJY; Wei H; Yu J
    Gastroenterology; 2017 Dec; 153(6):1621-1633.e6. PubMed ID: 28823860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.