These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27560039)

  • 21. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods.
    Almora-Barrios N; Novell-Leruth G; Whiting P; Liz-Marzán LM; López N
    Nano Lett; 2014 Feb; 14(2):871-5. PubMed ID: 24397442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Anisotropic Growth of Au Penta-Twinned Nanorods by Liquid Cell Transmission Electron Microscopy.
    Jin B; Sushko ML; Liu Z; Cao X; Jin C; Tang R
    J Phys Chem Lett; 2019 Apr; 10(7):1443-1449. PubMed ID: 30856333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress on the development of anisotropic gold nanoparticles: Design strategies and growth mechanism.
    Jones S; Pramanik A; Sweet C; Keyes A; Begum S; Vangra A; Yu H; Fu PP; Ray PC
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Jan; 35(1):47-66. PubMed ID: 28095116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of spacer lengths of gemini surfactants in the synthesis of silver nanorods in micellar media.
    Bhattacharya S; Biswas J
    Nanoscale; 2011 Jul; 3(7):2924-30. PubMed ID: 21597607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).
    Fedorov RG; Mandler D
    Phys Chem Chem Phys; 2013 Feb; 15(8):2725-32. PubMed ID: 23338843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitation of metal content in the silver-assisted growth of gold nanorods.
    Orendorff CJ; Murphy CJ
    J Phys Chem B; 2006 Mar; 110(9):3990-4. PubMed ID: 16509687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of high-density crystalline-shape gold nanoparticles on indium tin oxide surfaces: effects of alcohothermal seeding.
    Umar AA; Salleh MM; Majlis BY; Oyama M
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4974-80. PubMed ID: 21770130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile purification of colloidal NIR-responsive gold nanorods using ions assisted self-assembly.
    Liu L; Guo Z; Xu L; Xu R; Lu X
    Nanoscale Res Lett; 2011 Feb; 6(1):143. PubMed ID: 21711657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining rules for the shape evolution of gold nanoparticles.
    Langille MR; Personick ML; Zhang J; Mirkin CA
    J Am Chem Soc; 2012 Sep; 134(35):14542-54. PubMed ID: 22920241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the electrical double layer at aqueous gold and silver interfaces for saline solutions.
    Hughes ZE; Walsh TR
    J Colloid Interface Sci; 2014 Dec; 436():99-110. PubMed ID: 25265591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and mechanistic study of palladium nanobars and nanorods.
    Xiong Y; Cai H; Wiley BJ; Wang J; Kim MJ; Xia Y
    J Am Chem Soc; 2007 Mar; 129(12):3665-75. PubMed ID: 17335211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolution of size, shape, and surface morphology of gold nanorods.
    Tong W; Katz-Boon H; Walsh MJ; Weyland M; Etheridge J; Funston AM
    Chem Commun (Camb); 2018 Mar; 54(24):3022-3025. PubMed ID: 29511759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of Au@Ag core-shell pentatwinned nanorods: tuning the end facets.
    Zhang W; Goh HY; Firdoz S; Lu X
    Chemistry; 2013 Sep; 19(38):12732-8. PubMed ID: 23934938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles.
    Martinsson E; Shahjamali MM; Large N; Zaraee N; Zhou Y; Schatz GC; Mirkin CA; Aili D
    Small; 2016 Jan; 12(3):330-42. PubMed ID: 26583756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The surface structure of silver-coated gold nanocrystals and its influence on shape control.
    Padmos JD; Personick ML; Tang Q; Duchesne PN; Jiang DE; Mirkin CA; Zhang P
    Nat Commun; 2015 Jul; 6():7664. PubMed ID: 26153854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.
    Wall MA; Harmsen S; Pal S; Zhang L; Arianna G; Lombardi JR; Drain CM; Kircher MF
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28374940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant (bi)layers on gold nanorods.
    Gómez-Graña S; Hubert F; Testard F; Guerrero-Martínez A; Grillo I; Liz-Marzán LM; Spalla O
    Langmuir; 2012 Jan; 28(2):1453-9. PubMed ID: 22165910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures.
    Sreeprasad TS; Samal AK; Pradeep T
    Langmuir; 2007 Aug; 23(18):9463-71. PubMed ID: 17665936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.