These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2756028)

  • 21. Food- and light-entrainable oscillators control feeding and locomotor activity rhythms, respectively, in the Japanese catfish, Plotosus japonicus.
    Kasai M; Kiyohara S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):901-12. PubMed ID: 20725728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feeding Time Entrains the Olfactory Bulb Circadian Clock in Anosmic PER2::LUC Mice.
    Pavlovski I; Evans JA; Mistlberger RE
    Neuroscience; 2018 Nov; 393():175-184. PubMed ID: 30321586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.
    Verwey M; Lam GY; Amir S
    Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serotonin suppresses food anticipatory activity and synchronizes the food-entrainable oscillator during time-restricted feeding.
    Rozenblit-Susan S; Chapnik N; Genzer Y; Froy O
    Behav Brain Res; 2016 Jan; 297():150-4. PubMed ID: 26467604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peripheral clock gene expression in CS mice with bimodal locomotor rhythms.
    Watanabe T; Kojima M; Tomida S; Nakamura TJ; Yamamura T; Nakao N; Yasuo S; Yoshimura T; Ebihara S
    Neurosci Res; 2006 Apr; 54(4):295-301. PubMed ID: 16442179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei.
    O'Reilly H; Armstrong SM; Coleman GJ
    Physiol Behav; 1986 Oct; 38(4):471-6. PubMed ID: 3823161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Food as a circadian Zeitgeber for house sparrows: the effect of different food access durations.
    Hau M; Gwinner E
    J Biol Rhythms; 1996 Sep; 11(3):196-207. PubMed ID: 8872592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction between light- and feeding-entrainable circadian rhythms in the rat.
    Stephan FK
    Physiol Behav; 1986; 38(1):127-33. PubMed ID: 3786492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Housing conditions influence the expression of food-anticipatory activity in mice.
    de Groot MH; Rusak B
    Physiol Behav; 2004 Dec; 83(3):447-57. PubMed ID: 15581667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions.
    Lamont EW; Bruton J; Blum ID; Abizaid A
    Eur J Neurosci; 2014 Jan; 39(2):207-17. PubMed ID: 24134163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian rhythms of small carnivores and the effect of restricted feeding on daily activity.
    Zielinski WJ
    Physiol Behav; 1986; 38(5):613-20. PubMed ID: 3823174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca).
    Herrero MJ; Pascual M; Madrid JA; Sánchez-Vázquez FJ
    Physiol Behav; 2005 Mar; 84(4):595-605. PubMed ID: 15811395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: dependence on meal size and nutrient content.
    Mistlberger R; Rusak B
    Physiol Behav; 1987; 41(3):219-26. PubMed ID: 3432379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of restricted feeding cycle on the locomotor activity rhythm in the mouse Mus booduga.
    Sharma VK; Chidambaram R; Subbaraj R; Chandrashekaran MK
    Physiol Behav; 2000 Jul 1-15; 70(1-2):81-7. PubMed ID: 10978481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entrainment in calorie-restricted mice: conflicting zeitgebers and free-running conditions.
    Challet E; Solberg LC; Turek FW
    Am J Physiol; 1998 Jun; 274(6):R1751-61. PubMed ID: 9841486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mPeriod2
    Pendergast JS; Wendroth RH; Stenner RC; Keil CD; Yamazaki S
    Sci Rep; 2017 Nov; 7(1):15510. PubMed ID: 29138421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models.
    Pendergast JS; Yamazaki S
    J Biol Rhythms; 2018 Oct; 33(5):458-474. PubMed ID: 30033846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internal desynchronization of the circadian activity and feeding rhythm in an owl monkey (Aotus lemurinus griseimembra): a case study.
    Erkert HG
    Chronobiol Int; 2000 Mar; 17(2):147-53. PubMed ID: 10757460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.