These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 27560284)
1. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment. Brullo C; Ricciarelli R; Prickaerts J; Arancio O; Massa M; Rotolo C; Romussi A; Rebosio C; Marengo B; Pronzato MA; van Hagen BTJ; van Goethem NP; D'Ursi P; Orro A; Milanesi L; Guariento S; Cichero E; Fossa P; Fedele E; Bruno O Eur J Med Chem; 2016 Nov; 124():82-102. PubMed ID: 27560284 [TBL] [Abstract][Full Text] [Related]
2. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. Sierksma AS; van den Hove DL; Pfau F; Philippens M; Bruno O; Fedele E; Ricciarelli R; Steinbusch HW; Vanmierlo T; Prickaerts J Neuropharmacology; 2014 Feb; 77():120-30. PubMed ID: 24067928 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, biological evaluation, and molecular modeling of new 3-(cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) Oxime (GEBR-7b) related phosphodiesterase 4D (PDE4D) inhibitors. Brullo C; Massa M; Rocca M; Rotolo C; Guariento S; Rivera D; Ricciarelli R; Fedele E; Fossa P; Bruno O J Med Chem; 2014 Aug; 57(16):7061-72. PubMed ID: 25126889 [TBL] [Abstract][Full Text] [Related]
7. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. Li YF; Cheng YF; Huang Y; Conti M; Wilson SP; O'Donnell JM; Zhang HT J Neurosci; 2011 Jan; 31(1):172-83. PubMed ID: 21209202 [TBL] [Abstract][Full Text] [Related]
8. PDE4D inhibitors: a potential strategy for the treatment of memory impairment? Bruno O; Ricciarelli R; Prickaerts J; Parker L; Fedele E Neuropharmacology; 2014 Oct; 85():290-2. PubMed ID: 24942130 [No Abstract] [Full Text] [Related]
9. Design, synthesis, biological evaluation and structural characterization of novel GEBR library PDE4D inhibitors. Brullo C; Rapetti F; Abbate S; Prosdocimi T; Torretta A; Semrau M; Massa M; Alfei S; Storici P; Parisini E; Bruno O Eur J Med Chem; 2021 Nov; 223():113638. PubMed ID: 34171658 [TBL] [Abstract][Full Text] [Related]
10. New insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies. Guariento S; Bruno O; Fossa P; Cichero E Mol Divers; 2016 Feb; 20(1):77-92. PubMed ID: 26290462 [TBL] [Abstract][Full Text] [Related]
11. Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice. Zhang C; Xu Y; Chowdhary A; Fox D; Gurney ME; Zhang HT; Auerbach BD; Salvi RJ; Yang M; Li G; O'Donnell JM Neuropsychopharmacology; 2018 Oct; 43(11):2299-2309. PubMed ID: 30131563 [TBL] [Abstract][Full Text] [Related]
12. Phosphodiesterase-4D Knock-down in the Prefrontal Cortex Alleviates Chronic Unpredictable Stress-Induced Depressive-Like Behaviors and Memory Deficits in Mice. Wang ZZ; Yang WX; Zhang Y; Zhao N; Zhang YZ; Liu YQ; Xu Y; Wilson SP; O'Donnell JM; Zhang HT; Li YF Sci Rep; 2015 Jul; 5():11332. PubMed ID: 26161529 [TBL] [Abstract][Full Text] [Related]
13. PDE4D: A Multipurpose Pharmacological Target. Lusardi M; Rapetti F; Spallarossa A; Brullo C Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125619 [TBL] [Abstract][Full Text] [Related]
14. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis. Kaname T; Ki CS; Niikawa N; Baillie GS; Day JP; Yamamura K; Ohta T; Nishimura G; Mastuura N; Kim OH; Sohn YB; Kim HW; Cho SY; Ko AR; Lee JY; Kim HW; Ryu SH; Rhee H; Yang KS; Joo K; Lee J; Kim CH; Cho KH; Kim D; Yanagi K; Naritomi K; Yoshiura K; Kondoh T; Nii E; Tonoki H; Houslay MD; Jin DK Cell Signal; 2014 Nov; 26(11):2446-59. PubMed ID: 25064455 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Song G; Zhao D; Hu D; Li Y; Jin H; Cui Z Bioorg Med Chem Lett; 2015 Oct; 25(20):4610-4. PubMed ID: 26320621 [TBL] [Abstract][Full Text] [Related]
16. Insight into GEBR-32a: Chiral Resolution, Absolute Configuration and Enantiopreference in PDE4D Inhibition. Cavalloro V; Russo K; Vasile F; Pignataro L; Torretta A; Donini S; Semrau MS; Storici P; Rossi D; Rapetti F; Brullo C; Parisini E; Bruno O; Collina S Molecules; 2020 Feb; 25(4):. PubMed ID: 32093112 [TBL] [Abstract][Full Text] [Related]
17. Discovery of triazines as potent, selective and orally active PDE4 inhibitors. Gewald R; Grunwald C; Egerland U Bioorg Med Chem Lett; 2013 Aug; 23(15):4308-14. PubMed ID: 23806553 [TBL] [Abstract][Full Text] [Related]
18. Exploring the Role of Water Molecules in the Ligand Binding Domain of PDE4B and PDE4D: Virtual Screening Based Molecular Docking of Some Active Scaffolds. Singh P; Mishra M; Agarwal S; Sau S; Iyer AK; Kashaw SK Curr Comput Aided Drug Des; 2019; 15(4):334-366. PubMed ID: 30394213 [TBL] [Abstract][Full Text] [Related]
19. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4). Cameron RT; Coleman RG; Day JP; Yalla KC; Houslay MD; Adams DR; Shoichet BK; Baillie GS Biochem Pharmacol; 2013 May; 85(9):1297-305. PubMed ID: 23473803 [TBL] [Abstract][Full Text] [Related]