These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2756042)

  • 1. Effects of restricted feeding schedules on circadian organization in squirrel monkeys.
    Boulos Z; Frim DM; Dewey LK; Moore-Ede MC
    Physiol Behav; 1989 Mar; 45(3):507-15. PubMed ID: 2756042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of cyclic intragastric feeding as a circadian zeitgeber in the squirrel monkey.
    Apelgren KN; Frim DM; Harling-Berg CJ; Gander PH; Moore-Ede MC
    Physiol Behav; 1985 Mar; 34(3):335-40. PubMed ID: 3925471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding schedules and the circadian organization of behavior in the rat.
    Boulos Z; Rosenwasser AM; Terman M
    Behav Brain Res; 1980 Feb; 1(1):39-65. PubMed ID: 7284080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of feeding cycles on circadian rhythms in squirrel monkeys.
    Aschoff J; von Goetz C
    J Biol Rhythms; 1986; 1(4):267-76. PubMed ID: 2979589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice.
    Abe H; Kida M; Tsuji K; Mano T
    Physiol Behav; 1989 Feb; 45(2):397-401. PubMed ID: 2756028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light intensity on the circadian temperature and feeding rhythms in the squirrel monkey.
    Fuller CA; Edgar DM
    Physiol Behav; 1986; 36(4):687-91. PubMed ID: 3714843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricted feeding: a nonphotic zeitgeber in the rabbit.
    Jilge B
    Physiol Behav; 1992 Jan; 51(1):157-66. PubMed ID: 1741443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.
    Verwey M; Lam GY; Amir S
    Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus.
    Ferraro JS; Sulzman FM
    Am J Primatol; 1988; 15(2):143-55. PubMed ID: 11539805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber?
    Webb IC; Baltazar RM; Lehman MN; Coolen LM
    Eur J Neurosci; 2009 Nov; 30(9):1739-48. PubMed ID: 19878278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food as a circadian Zeitgeber for house sparrows: the effect of different food access durations.
    Hau M; Gwinner E
    J Biol Rhythms; 1996 Sep; 11(3):196-207. PubMed ID: 8872592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted feeding and circadian activity rhythms of a predatory marsupial, Dasyuroides byrnei.
    O'Reilly H; Armstrong SM; Coleman GJ
    Physiol Behav; 1986 Oct; 38(4):471-6. PubMed ID: 3823161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian rhythm of body temperature persists after suprachiasmatic lesions in the squirrel monkey.
    Fuller CA; Lydic R; Sulzman FM; Albers HE; Tepper B; Moore-Ede MC
    Am J Physiol; 1981 Nov; 241(5):R385-91. PubMed ID: 7304784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of synchronization of primate circadian rhythms by light and food.
    Sulzman FM; Fuller CA; Moore-Ede MC
    Am J Physiol; 1978 Mar; 234(3):R130-5. PubMed ID: 415621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of rabbits during restrictive feeding.
    Jilge B; Hörnicke H; Stähle H
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R46-54. PubMed ID: 3605390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms of small carnivores and the effect of restricted feeding on daily activity.
    Zielinski WJ
    Physiol Behav; 1986; 38(5):613-20. PubMed ID: 3823174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced internal desynchronization between circadian temperature and activity rhythms in squirrel monkeys.
    Gander PH; Lydic R; Albers HE; Moore-Ede MC
    Am J Physiol; 1985 May; 248(5 Pt 2):R567-72. PubMed ID: 3993815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.