These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27561078)

  • 21. Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes.
    Kang JS; Kim J; Kim JY; Lee MJ; Kang J; Son YJ; Jeong J; Park SH; Ko MJ; Sung YE
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8611-8620. PubMed ID: 29485266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots.
    Wu HL; Li XB; Tung CH; Wu LZ
    Adv Sci (Weinh); 2018 Apr; 5(4):1700684. PubMed ID: 29721417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells.
    Gibson EA; Le Pleux L; Fortage J; Pellegrin Y; Blart E; Odobel F; Hagfeldt A; Boschloo G
    Langmuir; 2012 Apr; 28(15):6485-93. PubMed ID: 22432412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon quantum dot tailored counter electrode for 7.01%-rear efficiency in a bifacial dye-sensitized solar cell.
    Zhu W; Zhao Y; Duan J; Duan Y; Tang Q; He B
    Chem Commun (Camb); 2017 Aug; 53(71):9894-9897. PubMed ID: 28828445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Built-in quantum dot antennas in dye-sensitized solar cells.
    Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A
    ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional Nanoplatform Based on Black Phosphorus Quantum Dots for Bioimaging and Photodynamic/Photothermal Synergistic Cancer Therapy.
    Li Y; Liu Z; Hou Y; Yang G; Fei X; Zhao H; Guo Y; Su C; Wang Z; Zhong H; Zhuang Z; Guo Z
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25098-25106. PubMed ID: 28671452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling Efficient Creation of Long-Lived Charge-Separation on Dye-Sensitized NiO Photocathodes.
    Dillon RJ; Alibabaei L; Meyer TJ; Papanikolas JM
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26786-26796. PubMed ID: 28731676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.
    Palmstrom AF; Santra PK; Bent SF
    Nanoscale; 2015 Aug; 7(29):12266-83. PubMed ID: 26147328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Active NiO Photocathodes for H
    Jung O; Pegis ML; Wang Z; Banerjee G; Nemes CT; Hoffeditz WL; Hupp JT; Schmuttenmaer CA; Brudvig GW; Mayer JM
    J Am Chem Soc; 2018 Mar; 140(11):4079-4084. PubMed ID: 29463086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films.
    Wang ZS; Yamaguchi T; Sugihara H; Arakawa H
    Langmuir; 2005 May; 21(10):4272-6. PubMed ID: 16032834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.
    Chen W; Li K; Wang Y; Feng X; Liao Z; Su Q; Lin X; He Z
    J Phys Chem Lett; 2017 Feb; 8(3):591-598. PubMed ID: 28084740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.
    Choi H; Nicolaescu R; Paek S; Ko J; Kamat PV
    ACS Nano; 2011 Nov; 5(11):9238-45. PubMed ID: 21961965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting.
    Shan B; Sherman BD; Klug CM; Nayak A; Marquard SL; Liu Q; Bullock RM; Meyer TJ
    J Phys Chem Lett; 2017 Sep; 8(18):4374-4379. PubMed ID: 28853290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling Interfacial Charge Transfer and Fill Factors in CuO-based Tandem Dye-Sensitized Solar Cells.
    Langmar O; Fazio E; Schol P; de la Torre G; Costa RD; Torres T; Guldi DM
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):4056-4060. PubMed ID: 30589190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes.
    Huang Z; He M; Yu M; Click K; Beauchamp D; Wu Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6857-61. PubMed ID: 25907357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced photocatalytic performance of Ag/TiO
    Wang X; Xiang Y; Zhou B; Zhang Y; Wu J; Hu R; Liu L; Song J; Qu J
    J Colloid Interface Sci; 2019 Jan; 534():1-11. PubMed ID: 30196196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual bio-detection and versatile bio-imaging of zinc-ion-coordinated black phosphorus quantum dots with improved stability and bright fluorescence.
    Jiang X; Jin H; Gui R
    Biosens Bioelectron; 2020 Oct; 165():112390. PubMed ID: 32729512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visible- and NIR-Light Responsive Black-Phosphorus-Based Nanostructures in Solar Fuel Production and Environmental Remediation.
    Feng R; Lei W; Liu G; Liu M
    Adv Mater; 2018 Dec; 30(49):e1804770. PubMed ID: 30318641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Efficiency Bifacial Dye-Sensitized Solar Cells for Application under Indoor Light Conditions.
    Venkatesan S; Lin WH; Teng H; Lee YL
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42780-42789. PubMed ID: 31618583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.