BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27561474)

  • 1. Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.
    Mengal N; Syed U; Malik SA; Ali Sahito I; Jeong SH
    Carbohydr Polym; 2016 Nov; 153():78-88. PubMed ID: 27561474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Novel Arginine-Based Flame Retardant and Its Application in Lyocell Fabric.
    Chen J; Liu Y; Zhang J; Ren Y; Liu X
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the flame retardancy of lyocell fabric finished with an efficient, halogen-free flame retardant.
    Tan W; Ren Y; Xiao M; Guo Y; Liu Y; Zhang J; Zhou X; Liu X
    RSC Adv; 2021 Oct; 11(55):34926-34937. PubMed ID: 35494735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Chitosan-Based Intumescent Flame Retardant Coating for Improving Flame Retardancy of Polyacrylonitrile Fabric.
    Ren Y; Tian T; Jiang L; Guo Y
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31627459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel green phosphorus-containing flame retardant finishing on polysaccharide-modified polyamide 66 fabric for improving hydrophilicity and durability.
    Rahman MZ; Wang X; Song L; Hu Y
    Int J Biol Macromol; 2023 Jun; 239():124252. PubMed ID: 36996951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics.
    Begum MS; Kader A; Milašius R
    Polymers (Basel); 2023 Jun; 15(11):. PubMed ID: 37299362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of polycarboxylic acids for sustainable crosslinking of silk fabrics: Evaluating flame retardancy and physical performances.
    Jiang H; Bu Y; Liu G; Zhang W; Cheng XW
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133129. PubMed ID: 38885864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.
    Xie K; Gao A; Zhang Y
    Carbohydr Polym; 2013 Oct; 98(1):706-10. PubMed ID: 23987402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency durable flame retardant with ammonium phosphate ester and phosphine oxide groups for cotton cellulose biomacromolecule.
    Wu X; Gou T; Zhao Q; Chen L; Wang P
    Int J Biol Macromol; 2022 Jan; 194():945-953. PubMed ID: 34838858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants.
    Mandlekar N; Cayla A; Rault F; Giraud S; Salaün F; Guan J
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33121036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics.
    Zhang F; Gao W; Jia Y; Lu Y; Zhang G
    Carbohydr Polym; 2018 Nov; 199():256-265. PubMed ID: 30143128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile construction of bio-based high fire-safety cellulose fabrics with well wearing performance.
    Wang TC; He XH; Hu W; Zhu L; Shao ZB
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127349. PubMed ID: 37838134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An eco-friendly NP flame retardant for durable flame-retardant treatment of cotton fabric.
    Liao Y; Chen Y; Wan C; Zhang G; Zhang F
    Int J Biol Macromol; 2021 Sep; 187():251-261. PubMed ID: 34314792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric ionic bond shielding encountering with carboxylate capturing metal ions for enhancing the flame retardant durability of regenerated cellulose fibers.
    Liu Y; Chen R; Li F; Sun L; Guo Z; Jiang Z; Ren Y
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133158. PubMed ID: 38878937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Efficient Flame-Retardant Finishing of Cotton Fabrics Based on Phytic Acid.
    Song WM; Zhang LY; Li P; Liu Y
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B/P/N flame retardant based on diboraspiro rings groups for improving the flame retardancy, char formation properties and thermal stability of cotton fabrics.
    Chen H; Ji G; Lan F; Wang Z; Chen C; Luan J; Dong C; Lu Z
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132330. PubMed ID: 38750840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties.
    Kundu CK; Li Z; Li X; Zhang Z; Hu Y
    Int J Biol Macromol; 2020 Aug; 156():362-371. PubMed ID: 32298721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and application of halogen-free and efficient Si/P/N-containing flame retardants on cotton fabrics.
    Zhang S; Chen C; Kong D; Zhang Y; Liu K; Shi M; Dong C; Lu Z
    Int J Biol Macromol; 2024 May; 268(Pt 1):131612. PubMed ID: 38631572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-based macromolecular phosphorus-containing active cotton flame retardant synthesized from starch.
    Lu Y; Zhao P; Chen Y; Huang T; Liu Y; Ding D; Zhang G
    Carbohydr Polym; 2022 Dec; 298():120076. PubMed ID: 36241318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired phosphorus-free and halogen-free biomass coatings for durable flame retardant modification of regenerated cellulose fibers.
    Liu Y; Zhao J; Yu X; Ren Y; Liu X
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129252. PubMed ID: 38199533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.