These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 27561485)
1. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Al-Kassas R; Wen J; Cheng AE; Kim AM; Liu SSM; Yu J Carbohydr Polym; 2016 Nov; 153():176-186. PubMed ID: 27561485 [TBL] [Abstract][Full Text] [Related]
2. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. Suedee R; Bodhibukkana C; Tangthong N; Amnuaikit C; Kaewnopparat S; Srichana T J Control Release; 2008 Aug; 129(3):170-8. PubMed ID: 18550193 [TBL] [Abstract][Full Text] [Related]
3. Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Şenyiğit ZA; Karavana SY; İlem-Özdemir D; Çalışkan Ç; Waldner C; Şen S; Bernkop-Schnürch A; Baloğlu E Int J Nanomedicine; 2015; 10():6493-507. PubMed ID: 26508855 [TBL] [Abstract][Full Text] [Related]
4. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma. Zhou W; He S; Yang Y; Jian D; Chen X; Ding J Drug Dev Ind Pharm; 2015; 41(7):1109-19. PubMed ID: 25151873 [TBL] [Abstract][Full Text] [Related]
5. Preparation and Evaluation of Cubic Nanoparticles for Improved Transdermal Delivery of Propranolol Hydrochloride. Zeng L; Tao C; Liu Z; Zhang J; Zhang M; Zhang J; Fang S; Ma X; Song H; Zhou X AAPS PharmSciTech; 2020 Oct; 21(7):266. PubMed ID: 33006694 [TBL] [Abstract][Full Text] [Related]
6. Statistical design and optimization of nano-transfersomes based chitosan gel for transdermal delivery of cefepime. Mirza R; Shah KU; Khan AU; Fawad M; Rehman AU; Ahmed N; Nawaz A; Shah SU; Alasmari AF; Alharbi M; Alasmari F; Hafeez Z; Haq SU Drug Dev Ind Pharm; 2024 Jun; 50(6):511-523. PubMed ID: 38718267 [TBL] [Abstract][Full Text] [Related]
7. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Jana S; Manna S; Nayak AK; Sen KK; Basu SK Colloids Surf B Biointerfaces; 2014 Feb; 114():36-44. PubMed ID: 24161504 [TBL] [Abstract][Full Text] [Related]
8. Development of Timolol Maleate Loaded Chitosan Nanoparticles For Improved Ocular Delivery. Saroha A; Pandey P; Kaushik D Pharm Nanotechnol; 2017; 5(4):310-316. PubMed ID: 28847270 [TBL] [Abstract][Full Text] [Related]
9. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Sharma S; Lohan S; Murthy RS Drug Dev Ind Pharm; 2014 Jul; 40(7):869-78. PubMed ID: 23600649 [TBL] [Abstract][Full Text] [Related]
10. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. Raja MA; Katas H; Jing Wen T PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo evaluation of locust bean gum and chitosan combination as a carrier for buccal drug delivery. Vijayaraghavan C; Vasanthakumar S; Ramakrishnan A Pharmazie; 2008 May; 63(5):342-7. PubMed ID: 18557416 [TBL] [Abstract][Full Text] [Related]
12. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. Senyiğit T; Sonvico F; Barbieri S; Ozer O; Santi P; Colombo P J Control Release; 2010 Mar; 142(3):368-73. PubMed ID: 19932722 [TBL] [Abstract][Full Text] [Related]
13. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Fan W; Yan W; Xu Z; Ni H Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934 [TBL] [Abstract][Full Text] [Related]
14. Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: Characterization and in vivo evaluation. Guan Y; Zuo T; Chang M; Zhang F; Wei T; Shao W; Lin G Int J Pharm; 2015 Jun; 487(1-2):135-41. PubMed ID: 25882014 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Sharma M; Sharma R; Jain DK; Saraf A Int J Biol Macromol; 2019 Aug; 135():246-260. PubMed ID: 31128197 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticle-Based Topical Ophthalmic Gel Formulation for Sustained Release of Hydrocortisone Butyrate. Yang X; Trinh HM; Agrahari V; Sheng Y; Pal D; Mitra AK AAPS PharmSciTech; 2016 Apr; 17(2):294-306. PubMed ID: 26085051 [TBL] [Abstract][Full Text] [Related]
17. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Khalil SK; El-Feky GS; El-Banna ST; Khalil WA Carbohydr Polym; 2012 Oct; 90(3):1244-53. PubMed ID: 22939337 [TBL] [Abstract][Full Text] [Related]
18. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Özcan I; Azizoğlu E; Senyiğit T; Özyazıcı M; Özer Ö Int J Nanomedicine; 2013; 8():461-75. PubMed ID: 23390364 [TBL] [Abstract][Full Text] [Related]
19. Self-Assembled Lecithin/Chitosan Nanoparticles Based on Phospholipid Complex: A Feasible Strategy to Improve Entrapment Efficiency and Transdermal Delivery of Poorly Lipophilic Drug. Dong W; Ye J; Wang W; Yang Y; Wang H; Sun T; Gao L; Liu Y Int J Nanomedicine; 2020; 15():5629-5643. PubMed ID: 32801706 [TBL] [Abstract][Full Text] [Related]
20. Chitosan-TPP nanoparticles stabilized by poloxamer for controlling the release and enhancing the bioavailability of doxazosin mesylate: Aljaeid BM; El-Say KM; Hosny KM Drug Dev Ind Pharm; 2019 Jul; 45(7):1130-1139. PubMed ID: 30884977 [No Abstract] [Full Text] [Related] [Next] [New Search]