BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27561724)

  • 21. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
    Luo MC; Deal KR; Akhunov ED; Akhunova AR; Anderson OD; Anderson JA; Blake N; Clegg MT; Coleman-Derr D; Conley EJ; Crossman CC; Dubcovsky J; Gill BS; Gu YQ; Hadam J; Heo HY; Huo N; Lazo G; Ma Y; Matthews DE; McGuire PE; Morrell PL; Qualset CO; Renfro J; Tabanao D; Talbert LE; Tian C; Toleno DM; Warburton ML; You FM; Zhang W; Dvorak J
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15780-5. PubMed ID: 19717446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome evolution during bread wheat formation unveiled by the distribution dynamics of SSR sequences on chromosomes using FISH.
    Zhang Y; Fan C; Chen Y; Wang RR; Zhang X; Han F; Hu Z
    BMC Genomics; 2021 Jan; 22(1):55. PubMed ID: 33446108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives.
    Wicker T; Mayer KF; Gundlach H; Martis M; Steuernagel B; Scholz U; Simková H; Kubaláková M; Choulet F; Taudien S; Platzer M; Feuillet C; Fahima T; Budak H; Dolezel J; Keller B; Stein N
    Plant Cell; 2011 May; 23(5):1706-18. PubMed ID: 21622801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat.
    Pestsova E; Ganal MW; Röder MS
    Genome; 2000 Aug; 43(4):689-97. PubMed ID: 10984182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome sequence of the progenitor of wheat A subgenome Triticum urartu.
    Ling HQ; Ma B; Shi X; Liu H; Dong L; Sun H; Cao Y; Gao Q; Zheng S; Li Y; Yu Y; Du H; Qi M; Li Y; Lu H; Yu H; Cui Y; Wang N; Chen C; Wu H; Zhao Y; Zhang J; Li Y; Zhou W; Zhang B; Hu W; van Eijk MJT; Tang J; Witsenboer HMA; Zhao S; Li Z; Zhang A; Wang D; Liang C
    Nature; 2018 May; 557(7705):424-428. PubMed ID: 29743678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.).
    Han B; Wang C; Tang Z; Ren Y; Li Y; Zhang D; Dong Y; Zhao X
    PLoS One; 2015; 10(11):e0141540. PubMed ID: 26536014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata.
    Tiwari VK; Wang S; Danilova T; Koo DH; Vrána J; Kubaláková M; Hribova E; Rawat N; Kalia B; Singh N; Friebe B; Doležel J; Akhunov E; Poland J; Sabir JS; Gill BS
    Plant J; 2015 Nov; 84(4):733-46. PubMed ID: 26408103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA sequence-based mapping and comparative genomics of the
    Wang RR; Li X; Robbins MD; Larson SR; Bushman SB; Jones TA; Thomas A
    Genome; 2020 Sep; 63(9):445-457. PubMed ID: 32384249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide polymorphisms from RNA sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat.
    Michikawa A; Yoshida K; Okada M; Sato K; Takumi S
    Mol Genet Genomics; 2019 Oct; 294(5):1327-1341. PubMed ID: 31187273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids.
    Salina EA; Lim KY; Badaeva ED; Shcherban AB; Adonina IG; Amosova AV; Samatadze TE; Vatolina TY; Zoshchuk SA; Leitch AR
    Genome; 2006 Aug; 49(8):1023-35. PubMed ID: 17036077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat.
    Provan J; Wolters P; Caldwell KH; Powell W
    Theor Appl Genet; 2004 Apr; 108(6):1182-90. PubMed ID: 15067406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species.
    Sato K; Yoshida K; Takumi S
    Funct Integr Genomics; 2021 Nov; 21(5-6):535-542. PubMed ID: 34405283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes.
    Luo MC; Deal KR; Yang ZL; Dvorak J
    Theor Appl Genet; 2005 Oct; 111(6):1098-106. PubMed ID: 16088396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata.
    Okada M; Yoshida K; Nishijima R; Michikawa A; Motoi Y; Sato K; Takumi S
    BMC Plant Biol; 2018 Nov; 18(1):271. PubMed ID: 30409135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii.
    Dong L; Huo N; Wang Y; Deal K; Wang D; Hu T; Dvorak J; Anderson OD; Luo MC; Gu YQ
    Plant J; 2016 Sep; 87(5):495-506. PubMed ID: 27228577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a D genome specific marker resource for diploid and hexaploid wheat.
    Wang Y; Drader T; Tiwari VK; Dong L; Kumar A; Huo N; Ghavami F; Iqbal MJ; Lazo GR; Leonard J; Gill BS; Kianian SF; Luo MC; Gu YQ
    BMC Genomics; 2015 Aug; 16(1):646. PubMed ID: 26315263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Phylogeny of Triticum L. and Aegilops L. genuses inferred from a comparative analysis of nucleotide sequences in promoter rDNA regions of individual species].
    Vakhitov VA; Chemeris AV; Sabirzhanov BE; Akhunov ED; Kulikov AM; Nikonorov IuM; Gimalov FR; Bikbulatova SM; Baĭmiev AKh
    Genetika; 2003 Jan; 39(1):5-17. PubMed ID: 12624928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and expression analysis of WOX5 genes from wheat and its relatives.
    Zhao S; Jiang QT; Ma J; Zhang XW; Zhao QZ; Wang XY; Wang CS; Cao X; Lu ZX; Zheng YL; Wei YM
    Gene; 2014 Mar; 537(1):63-9. PubMed ID: 24368329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation.
    Jia J; Zhao S; Kong X; Li Y; Zhao G; He W; Appels R; Pfeifer M; Tao Y; Zhang X; Jing R; Zhang C; Ma Y; Gao L; Gao C; Spannagl M; Mayer KF; Li D; Pan S; Zheng F; Hu Q; Xia X; Li J; Liang Q; Chen J; Wicker T; Gou C; Kuang H; He G; Luo Y; Keller B; Xia Q; Lu P; Wang J; Zou H; Zhang R; Xu J; Gao J; Middleton C; Quan Z; Liu G; Wang J; ; Yang H; Liu X; He Z; Mao L; Wang J
    Nature; 2013 Apr; 496(7443):91-5. PubMed ID: 23535592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat.
    Dvorak J; Akhunov ED; Akhunov AR; Deal KR; Luo MC
    Mol Biol Evol; 2006 Jul; 23(7):1386-96. PubMed ID: 16675504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.