BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27561731)

  • 1. Kinetics and mechanisms of formation of earthy and musty odor compounds: Chloroanisoles during water chlorination.
    Zhang K; Zhou X; Zhang T; Mao M; Li L; Liao W
    Chemosphere; 2016 Nov; 163():366-372. PubMed ID: 27561731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.
    Acero JL; Piriou P; von Gunten U
    Water Res; 2005 Aug; 39(13):2979-93. PubMed ID: 15985278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet-mediated peroxymonosulfate diminution of earthy and musty compound trichloroanisole in water.
    Zhu H; Jia R; Sun S; Feng G; Wang M; Sun L; Hou L
    Ecotoxicol Environ Saf; 2020 Dec; 205():111343. PubMed ID: 32979801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the odor threshold concentrations of chlorobrominated anisoles in water.
    Diaz A; Fabrellas C; Ventura F; Galceran MT
    J Agric Food Chem; 2005 Jan; 53(2):383-7. PubMed ID: 15656676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of earthy-musty odorants in drinking water by powdered activated carbon.
    Liang C; Wang D; Yang M; Sun W; Zhang S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):767-78. PubMed ID: 15792298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrazines: A diverse class of earthy-musty odorants impacting drinking water quality and consumer satisfaction.
    Wang C; Yu J; Gallagher DL; Byrd J; Yao W; Wang Q; Guo Q; Dietrich AM; Yang M
    Water Res; 2020 Sep; 182():115971. PubMed ID: 32554269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of earthy and musty odor compounds (geosmin, 2-methylisoborneol and 2,4,6-trichloroanisole) in biologically treated wastewater.
    Urase T; Sasaki Y
    Water Sci Technol; 2013; 68(9):1969-75. PubMed ID: 24225096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.
    Soufan M; Deborde M; Delmont A; Legube B
    Water Res; 2013 Sep; 47(14):5076-87. PubMed ID: 23891541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of odorous 2,4,6-trichloroanisole in chlorinated water by UV-LED/chlorination: kinetics and influence factors.
    Zhang YL; Lin YL; Zhang TY; Lu YS; Zhou XY; Liu Z; Zheng ZX; Xu MY; Xu B
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44325-44336. PubMed ID: 36690857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of the earthy and musty odorant 2,4,6-tricholoroanisole by persulfate activated with iron of different valences.
    Zhang K; Zhou X; Zhang T; Yu L; Qian Z; Liao W; Li C
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3435-3445. PubMed ID: 29152696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China.
    Wang C; Yu J; Guo Q; Sun D; Su M; An W; Zhang Y; Yang M
    Environ Pollut; 2019 Jun; 249():305-310. PubMed ID: 30901644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants.
    Bai X; Zhang T; Qu Z; Li H; Yang Z
    Chemosphere; 2017 Sep; 182():223-230. PubMed ID: 28499183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships among electrolyzed water postharvest treatments on winegrapes and chloroanisoles occurrence in wine.
    Giacosa S; Gabrielli M; Torchio F; Río Segade S; Moar Grobas AM; Ricauda Aimonino D; Gay P; Gerbi V; Maury C; Rolle L
    Food Res Int; 2019 Jun; 120():235-243. PubMed ID: 31000235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of aminopyrine in the presence of free available chlorine: Kinetics, products, and reaction pathways.
    Cai MQ; Feng L; Zhang LQ
    Chemosphere; 2017 Mar; 171():625-634. PubMed ID: 28056449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and emission of chloroanisoles as indoor pollutants.
    Gunschera J; Fuhrmann F; Salthammer T; Schulze A; Uhde E
    Environ Sci Pollut Res Int; 2004; 11(3):147-51. PubMed ID: 15259696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorination of the β-triketone herbicides tembotrione and sulcotrione: Kinetic and mechanistic study, transformation products identification and toxicity.
    Tawk A; Deborde M; Labanowski J; Gallard H
    Water Res; 2015 Jun; 76():132-42. PubMed ID: 25813488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of chlorine and chloramines on earthy and musty odors in drinking water.
    Oestman E; Schweitzer L; Tomboulian P; Corado A; Suffet IH
    Water Sci Technol; 2004; 49(9):153-9. PubMed ID: 15237620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destruction of chloroanisoles by using a hydrogen peroxide activated method and its application to remove chloroanisoles from cork stoppers.
    Recio E; Alvarez-Rodríguez ML; Rumbero A; Garzón E; Coque JJ
    J Agric Food Chem; 2011 Dec; 59(23):12589-97. PubMed ID: 22074456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the reactivity of free chlorine constituents Cl₂, Cl₂O, and HOCl toward aromatic ethers.
    Sivey JD; Roberts AL
    Environ Sci Technol; 2012 Feb; 46(4):2141-7. PubMed ID: 22211432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.