These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 27562138)

  • 1. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
    Milias-Argeitis A; Rullan M; Aoki SK; Buchmann P; Khammash M
    Nat Commun; 2016 Aug; 7():12546. PubMed ID: 27562138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Free Optogenetic Gene Expression System.
    Jayaraman P; Yeoh JW; Jayaraman S; Teh AY; Zhang J; Poh CL
    ACS Synth Biol; 2018 Apr; 7(4):986-994. PubMed ID: 29596741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback.
    Gutiérrez Mena J; Kumar S; Khammash M
    Nat Commun; 2022 Aug; 13(1):4808. PubMed ID: 35973993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optogenetic upgrade for the Tet-OFF system.
    Müller K; Zurbriggen MD; Weber W
    Biotechnol Bioeng; 2015 Jul; 112(7):1483-7. PubMed ID: 25683779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mini Photobioreactors for in Vivo Real-Time Characterization and Evolutionary Tuning of Bacterial Optogenetic Circuit.
    Wang H; Yang YT
    ACS Synth Biol; 2017 Sep; 6(9):1793-1796. PubMed ID: 28532145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ characterisation and manipulation of biological systems with Chi.Bio.
    Steel H; Habgood R; Kelly CL; Papachristodoulou A
    PLoS Biol; 2020 Jul; 18(7):e3000794. PubMed ID: 32730242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photoconversion model for full spectral programming and multiplexing of optogenetic systems.
    Olson EJ; Tzouanas CN; Tabor JJ
    Mol Syst Biol; 2017 Apr; 13(4):926. PubMed ID: 28438832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch.
    Fischbach P; Gonschorek P; Baaske J; Davies JA; Weber W; Zurbriggen MD
    Methods Mol Biol; 2020; 2173():159-170. PubMed ID: 32651917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic methods in drug screening: technologies and applications.
    Agus V; Janovjak H
    Curr Opin Biotechnol; 2017 Dec; 48():8-14. PubMed ID: 28273648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation.
    Lehmann R; Gallert C; Roddelkopf T; Junginger S; Thurow K
    J Lab Autom; 2016 Aug; 21(4):568-78. PubMed ID: 26203054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.
    Benman W; Datta S; Gonzalez-Martinez D; Lee G; Hooper J; Qian G; Leavitt G; Salloum L; Ho G; Mhatre S; Magaraci MS; Patterson M; Mannickarottu SG; Malani S; Avalos JL; Chow BY; Bugaj LJ
    Commun Biol; 2023 Nov; 6(1):1192. PubMed ID: 38001175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures.
    Lara AR; Caspeta L; Gosset G; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2008 Mar; 99(4):893-901. PubMed ID: 17929322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications.
    Stewart CJ; McClean MN
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
    Melendez J; Patel M; Oakes BL; Xu P; Morton P; McClean MN
    Integr Biol (Camb); 2014 Mar; 6(3):366-72. PubMed ID: 24477515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic control of the lac operon for bacterial chemical and protein production.
    Lalwani MA; Ip SS; Carrasco-López C; Day C; Zhao EM; Kawabe H; Avalos JL
    Nat Chem Biol; 2021 Jan; 17(1):71-79. PubMed ID: 32895498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Inducible Recombinases for Bacterial Optogenetics.
    Sheets MB; Wong WW; Dunlop MJ
    ACS Synth Biol; 2020 Feb; 9(2):227-235. PubMed ID: 31961670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated adherent human cell culture (mesenchymal stem cells).
    Thomas R; Ratcliffe E
    Methods Mol Biol; 2012; 806():393-406. PubMed ID: 22057466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli.
    Guidi C; De Wannemaeker L; De Baets J; Demeester W; Maertens J; De Paepe B; De Mey M
    Microb Cell Fact; 2022 Dec; 21(1):260. PubMed ID: 36522655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli.
    Puskeiler R; Kusterer A; John GT; Weuster-Botz D
    Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):227-35. PubMed ID: 15853771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.