These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27562138)

  • 21. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.
    Baumschlager A; Aoki SK; Khammash M
    ACS Synth Biol; 2017 Nov; 6(11):2157-2167. PubMed ID: 29045151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetic Control by Pulsed Illumination.
    Hennemann J; Iwasaki RS; Grund TN; Diensthuber RP; Richter F; Möglich A
    Chembiochem; 2018 Jun; 19(12):1296-1304. PubMed ID: 29442428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology.
    Inouye M
    J Cell Physiol; 2006 Dec; 209(3):670-6. PubMed ID: 17001682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic profiling of Escherichia coli proteins under high cell density fed-batch cultivation with overexpression of phosphogluconolactonase.
    Wang Y; Wu SL; Hancock WS; Trala R; Kessler M; Taylor AH; Patel PS; Aon JC
    Biotechnol Prog; 2005; 21(5):1401-11. PubMed ID: 16209543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
    Repina NA; Rosenbloom A; Mukherjee A; Schaffer DV; Kane RS
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():13-39. PubMed ID: 28592174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells.
    Yu Y; Yu G; Ye H
    Methods Mol Biol; 2021; 2312():125-139. PubMed ID: 34228288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bringing Light into Cell-Free Expression.
    Zhang P; Yang J; Cho E; Lu Y
    ACS Synth Biol; 2020 Aug; 9(8):2144-2153. PubMed ID: 32603590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lighting the way: recent developments and applications in molecular optogenetics.
    Armbruster A; Mohamed AM; Phan HT; Weber W
    Curr Opin Biotechnol; 2024 Jun; 87():103126. PubMed ID: 38554641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An automated rat single pellet reaching system with high-speed video capture.
    Ellens DJ; Gaidica M; Toader A; Peng S; Shue S; John T; Bova A; Leventhal DK
    J Neurosci Methods; 2016 Sep; 271():119-27. PubMed ID: 27450925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-inducible protein degradation in
    Tague N; Coriano-Ortiz C; Sheets MB; Dunlop MJ
    Elife; 2024 Jan; 12():. PubMed ID: 38270583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering AraC to make it responsive to light instead of arabinose.
    Romano E; Baumschlager A; Akmeriç EB; Palanisamy N; Houmani M; Schmidt G; Öztürk MA; Ernst L; Khammash M; Di Ventura B
    Nat Chem Biol; 2021 Jul; 17(7):817-827. PubMed ID: 33903769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic control of mesenchymal cell fate towards precise bone regeneration.
    Wang W; Huang D; Ren J; Li R; Feng Z; Guan C; Bao B; Cai B; Ling J; Zhou C
    Theranostics; 2019; 9(26):8196-8205. PubMed ID: 31754390
    [No Abstract]   [Full Text] [Related]  

  • 34. Orthogonal optogenetic triple-gene control in Mammalian cells.
    Müller K; Engesser R; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2014 Nov; 3(11):796-801. PubMed ID: 25343333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highlighter: An optogenetic system for high-resolution gene expression control in plants.
    Larsen B; Hofmann R; Camacho IS; Clarke RW; Lagarias JC; Jones AR; Jones AM
    PLoS Biol; 2023 Sep; 21(9):e3002303. PubMed ID: 37733664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
    Baaske J; Gonschorek P; Engesser R; Dominguez-Monedero A; Raute K; Fischbach P; Müller K; Cachat E; Schamel WWA; Minguet S; Davies JA; Timmer J; Weber W; Zurbriggen MD
    Sci Rep; 2018 Oct; 8(1):15024. PubMed ID: 30301909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production.
    Benisch M; Benzinger D; Kumar S; Hu H; Khammash M
    Metab Eng; 2023 May; 77():32-40. PubMed ID: 36914087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic feedback control of neural activity.
    Newman JP; Fong MF; Millard DC; Whitmire CJ; Stanley GB; Potter SM
    Elife; 2015 Jul; 4():e07192. PubMed ID: 26140329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an automated culture system for laboratory evolution.
    Horinouchi T; Minamoto T; Suzuki S; Shimizu H; Furusawa C
    J Lab Autom; 2014 Oct; 19(5):478-82. PubMed ID: 24526062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
    Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R
    Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.