These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 27562515)

  • 41. [Topographic organization of the ventral striatum afferent projection from amygdaloid complex and hippocampal formation].
    Kunishio K; Ohmoto T; Haber SN
    No To Shinkei; 1996 Jun; 48(6):534-42. PubMed ID: 8703556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):167-92. PubMed ID: 7410590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins.
    Rajakumar N; Rushlow W; Naus CC; Elisevich K; Flumerfelt BA
    J Comp Neurol; 1994 Aug; 346(3):337-48. PubMed ID: 7995854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neurotensin in projection neurons of the striatum and nucleus accumbens, with reference to coexistence with enkephalin and GABA: an immunohistochemical study in the cat.
    Sugimoto T; Mizuno N
    J Comp Neurol; 1987 Mar; 257(3):383-95. PubMed ID: 2435769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nucleus accumbens subregions: hodological and immunohistochemical study in the domestic chick (Gallus domesticus).
    Bálint E; Csillag A
    Cell Tissue Res; 2007 Feb; 327(2):221-30. PubMed ID: 17028892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurochemical heterogeneity of the primate nucleus accumbens.
    Ikemoto K; Satoh K; Maeda T; Fibiger HC
    Exp Brain Res; 1995; 104(2):177-90. PubMed ID: 7545584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is the songbird Area X striatal, pallidal, or both? An anatomical study.
    Carrillo GD; Doupe AJ
    J Comp Neurol; 2004 May; 473(3):415-37. PubMed ID: 15116398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feeding induced by microinjections of NMDA and AMPA-kainate receptor antagonists into ventral striatal and ventral pallidal areas of the pigeon.
    Da Silva AA; Marino-Neto J; Paschoalini MA
    Brain Res; 2003 Mar; 966(1):76-83. PubMed ID: 12646310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Convergence and segregation of ventral striatal inputs and outputs.
    Groenewegen HJ; Wright CI; Beijer AV; Voorn P
    Ann N Y Acad Sci; 1999 Jun; 877():49-63. PubMed ID: 10415642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs.
    Márin O; Smeets WJ; González A
    J Comp Neurol; 1997 Jul; 383(3):349-69. PubMed ID: 9205046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats.
    Eberle-Wang K; Mikeladze Z; Uryu K; Chesselet MF
    J Comp Neurol; 1997 Jul; 384(2):233-47. PubMed ID: 9215720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cholinergic innervation in the human striatum: a three-compartment model.
    Holt DJ; Hersh LB; Saper CB
    Neuroscience; 1996 Sep; 74(1):67-87. PubMed ID: 8843078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Feb; 378(1):50-69. PubMed ID: 9120054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple amygdaloid divisions of arcopallium send convergent projections to the nucleus accumbens and neighboring subpallial amygdala regions in the domestic chicken: a selective pathway tracing and reconstruction study.
    Hanics J; Teleki G; Alpár A; Székely AD; Csillag A
    Brain Struct Funct; 2017 Jan; 222(1):301-315. PubMed ID: 27053075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (Microtus ochrogaster).
    Lim MM; Murphy AZ; Young LJ
    J Comp Neurol; 2004 Jan; 468(4):555-70. PubMed ID: 14689486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early changes in neuropeptide mRNA expression in the striatum following reserpine treatment.
    Harrison MB; Kumar S; Hubbard CA; Trugman JM
    Exp Neurol; 2001 Feb; 167(2):321-8. PubMed ID: 11161620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography.
    Beckstead RM; Wooten GF; Trugman JM
    J Comp Neurol; 1988 Feb; 268(1):131-45. PubMed ID: 2964456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrophysiological properties of avian basal ganglia neurons recorded in vitro.
    Farries MA; Perkel DJ
    J Neurophysiol; 2000 Nov; 84(5):2502-13. PubMed ID: 11067993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Looking at the trees in the central forest: a new pallidal-striatal cell type.
    Vicente AM; Costa RM
    Neuron; 2012 Jun; 74(6):967-9. PubMed ID: 22726827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Basal ganglia pathways to the tectum: the afferent and efferent connections of the lateral spiriform nucleus of pigeon.
    Reiner A; Brecha NC; Karten HJ
    J Comp Neurol; 1982 Jun; 208(1):16-36. PubMed ID: 7119152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.