These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27562521)

  • 1. The neural control of respiration in lampreys.
    Missaghi K; Le Gal JP; Gray PA; Dubuc R
    Respir Physiol Neurobiol; 2016 Dec; 234():14-25. PubMed ID: 27562521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural networks that co-ordinate locomotion and body orientation in lamprey.
    Grillner S; Deliagina T; Ekeberg O ; el Manira A; Hill RH; Lansner A; Orlovsky GN; Wallén P
    Trends Neurosci; 1995 Jun; 18(6):270-9. PubMed ID: 7571002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms underlying respiratory rhythm generation in the lamprey.
    Bongianni F; Mutolo D; Cinelli E; Pantaleo T
    Respir Physiol Neurobiol; 2016 Apr; 224():17-26. PubMed ID: 25220696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural bases of goal-directed locomotion in vertebrates--an overview.
    Grillner S; Wallén P; Saitoh K; Kozlov A; Robertson B
    Brain Res Rev; 2008 Jan; 57(1):2-12. PubMed ID: 17916382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral connectivity in the brainstem respiratory networks of lampreys.
    Gariépy JF; Missaghi K; Chartré S; Robert M; Auclair F; Dubuc R
    J Comp Neurol; 2012 May; 520(7):1442-56. PubMed ID: 22101947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator.
    Cinelli E; Mutolo D; Contini M; Pantaleo T; Bongianni F
    Neuroscience; 2016 Jun; 326():126-140. PubMed ID: 27058146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of lung breathing from a lungless primitive vertebrate.
    Hoffman M; Taylor BE; Harris MB
    Respir Physiol Neurobiol; 2016 Apr; 224():11-6. PubMed ID: 26476056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical and physiological study of brainstem nuclei relaying dorsal column inputs in lampreys.
    Dubuc R; Bongianni F; Ohta Y; Grillner S
    J Comp Neurol; 1993 Jan; 327(2):260-70. PubMed ID: 8381144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lamprey respiratory network: Some evolutionary aspects.
    Mutolo D; Bongianni F; Pantaleo T; Cinelli E
    Respir Physiol Neurobiol; 2021 Dec; 294():103766. PubMed ID: 34329767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the caudal brainstem and the lamprey central pattern generator for locomotion.
    Cohen AH; Guan L; Harris J; Jung R; Kiemel T
    Neuroscience; 1996 Oct; 74(4):1161-73. PubMed ID: 8895883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates.
    Lacroix-Ouellette P; Dubuc R
    Front Neural Circuits; 2023; 17():910207. PubMed ID: 37063386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].
    Arshavsky I; Deliagina TG; Orlovsky GN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(2):156-87. PubMed ID: 26080596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple cellular and network control principles govern complex patterns of motor behavior.
    Kozlov A; Huss M; Lansner A; Kotaleski JH; Grillner S
    Proc Natl Acad Sci U S A; 2009 Nov; 106(47):20027-32. PubMed ID: 19901329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
    Kozlov AK; Kardamakis AA; Hellgren Kotaleski J; Grillner S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3591-6. PubMed ID: 24550483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey.
    Davis GR; McClellan AD
    J Comp Neurol; 1994 Jun; 344(1):65-82. PubMed ID: 8063956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.
    Grillner S; Wallén P; Hill R; Cangiano L; El Manira A
    J Physiol; 2001 May; 533(Pt 1):23-30. PubMed ID: 11351009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuronal substrate for a state-dependent modulation of sensory inputs in the brainstem.
    Le Ray D; Juvin L; Boutin T; Auclair F; Dubuc R
    Eur J Neurosci; 2010 Jul; 32(1):53-9. PubMed ID: 20576031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neuronal bases of locomotion in lamprey--in vitro studies of the brainstem-spinal cord.
    Grillner S; Wallén P; Brodin L; Christenson J; Dubuc R; Hill R; Ohta Y
    Acta Biol Hung; 1988; 39(2-3):145-9. PubMed ID: 3077001
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.