These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 27562776)
21. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. Wang Y; Zhu G; Harhangi HR; Zhu B; Jetten MS; Yin C; Op den Camp HJ FEMS Microbiol Lett; 2012 Nov; 336(2):79-88. PubMed ID: 22889245 [TBL] [Abstract][Full Text] [Related]
22. Three-Source Partitioning of Methane Emissions from Paddy Soil: Linkage to Methanogenic Community Structure. Yuan J; Yi X; Cao L Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934889 [TBL] [Abstract][Full Text] [Related]
23. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. Shen LD; Geng CY; Ren BJ; Jin JH; Huang HC; Liu X; Yang WT; Yang YL; Liu JQ; Tian MH Microb Ecol; 2023 Feb; 85(2):441-453. PubMed ID: 35098330 [TBL] [Abstract][Full Text] [Related]
24. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Lee HJ; Jeong SE; Kim PJ; Madsen EL; Jeon CO Front Microbiol; 2015; 6():639. PubMed ID: 26161079 [TBL] [Abstract][Full Text] [Related]
26. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. He Z; Shen J; Zhu Y; Feng J; Pan X Chemosphere; 2023 Jul; 329():138623. PubMed ID: 37030346 [TBL] [Abstract][Full Text] [Related]
27. Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Maarastawi SA; Frindte K; Linnartz M; Knief C Front Microbiol; 2018; 9():1295. PubMed ID: 29963033 [TBL] [Abstract][Full Text] [Related]
29. Hara S; Wada N; Hsiao SS; Zhang M; Bao Z; Iizuka Y; Lee DC; Sato S; Tang SL; Minamisawa K mBio; 2022 Jun; 13(3):e0125522. PubMed ID: 35608299 [TBL] [Abstract][Full Text] [Related]
30. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Han P; Li M; Gu JD Appl Microbiol Biotechnol; 2013 Oct; 97(19):8741-56. PubMed ID: 23974369 [TBL] [Abstract][Full Text] [Related]
31. The effect of modified biochar on methane emission and succession of methanogenic archaeal community in paddy soil. Lu Y; Liu Q; Fu L; Hu Y; Zhong L; Zhang S; Liu Q; Xie Q Chemosphere; 2022 Oct; 304():135288. PubMed ID: 35691388 [TBL] [Abstract][Full Text] [Related]
32. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches. Xu S; Lu W; Muhammad FM; Liu Y; Guo H; Meng R; Wang H J Environ Sci (China); 2018 Mar; 65():367-374. PubMed ID: 29548408 [TBL] [Abstract][Full Text] [Related]
33. Effect of aquatic weeds on methane emission from submerged paddy soil. Inubushi K; Sugii H; Nishino S; Nishino E Am J Bot; 2001 Jun; 88(6):975-9. PubMed ID: 11410460 [TBL] [Abstract][Full Text] [Related]
34. Increasing methane (CH Ma Q; Li J; Aamer M; Huang G PeerJ; 2020; 8():e9653. PubMed ID: 32832274 [TBL] [Abstract][Full Text] [Related]
35. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. He Z; Wang J; Hu J; Yu H; Jetten MSM; Liu H; Cai C; Liu Y; Ren H; Zhang X; Hua M; Xu X; Zheng P; Hu B Environ Pollut; 2019 Jan; 244():228-237. PubMed ID: 30342364 [TBL] [Abstract][Full Text] [Related]
36. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. Hatamoto M; Kimura M; Sato T; Koizumi M; Takahashi M; Kawakami S; Araki N; Yamaguchi T PLoS One; 2014; 9(12):e115823. PubMed ID: 25545013 [TBL] [Abstract][Full Text] [Related]
37. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats. Shen LD; Wu HS; Gao ZQ; Liu X; Li J Sci Rep; 2016 May; 6():25647. PubMed ID: 27157928 [TBL] [Abstract][Full Text] [Related]
38. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Stubner S; Wind T; Conrad R Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825 [TBL] [Abstract][Full Text] [Related]
39. Effects of nickel and cobalt on methane production and methanogen abundance and diversity in paddy soil. Wang T; Li Z; Chen X; Long XE PeerJ; 2019; 7():e6274. PubMed ID: 30671309 [TBL] [Abstract][Full Text] [Related]
40. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Wang J; Dong H; Wang W; Gu JD Appl Microbiol Biotechnol; 2014 Mar; 98(6):2675-86. PubMed ID: 24077726 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]