BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27562848)

  • 21. Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage.
    Chou SH; Lan J; Esposito E; Ning M; Balaj L; Ji X; Lo EH; Hayakawa K
    Stroke; 2017 Aug; 48(8):2231-2237. PubMed ID: 28663512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial dynamics following global cerebral ischemia.
    Kumar R; Bukowski MJ; Wider JM; Reynolds CA; Calo L; Lepore B; Tousignant R; Jones M; Przyklenk K; Sanderson TH
    Mol Cell Neurosci; 2016 Oct; 76():68-75. PubMed ID: 27567688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review.
    Chang H; Chen E; Zhu T; Liu J; Chen C
    J Alzheimers Dis; 2024; 97(4):1545-1570. PubMed ID: 38277294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. β2-glycoprotein I promotes the clearance of circulating mitochondria.
    Dasgupta SK; Gollamudi J; Rivera S; Poche RA; Rumbaut RE; Thiagarajan P
    PLoS One; 2024; 19(1):e0293304. PubMed ID: 38271349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration.
    Kunze R; Fischer S; Marti HH; Preissner KT
    J Biomed Sci; 2023 Aug; 30(1):64. PubMed ID: 37550658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Impact of microRNAs on Mitochondrial Function and Immunity: Relevance to Parkinson's Disease.
    Guedes BFS; Cardoso SM; Esteves AR
    Biomedicines; 2023 May; 11(5):. PubMed ID: 37239020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Bacteria-Mitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson's Disease.
    Magalhães JD; Esteves AR; Candeias E; Silva DF; Empadinhas N; Cardoso SM
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Bioenergetics in Neurodegeneration.
    Strope TA; Birky CJ; Wilkins HM
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The "mitochondrial stress responses": the "Dr. Jekyll and Mr. Hyde" of neuronal disorders.
    Patergnani S; Morciano G; Carinci M; Leo S; Pinton P; Rimessi A
    Neural Regen Res; 2022 Dec; 17(12):2563-2575. PubMed ID: 35662183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease.
    Austad SN; Ballinger S; Buford TW; Carter CS; Smith DL; Darley-Usmar V; Zhang J
    Acta Pharm Sin B; 2022 Feb; 12(2):511-531. PubMed ID: 35256932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases.
    Litwiniuk A; Baranowska-Bik A; Domańska A; Kalisz M; Bik W
    Pharmaceuticals (Basel); 2021 Nov; 14(12):. PubMed ID: 34959622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology.
    Gauba E; Sui S; Tian J; Driskill C; Jia K; Yu C; Rughwani T; Wang Q; Kroener S; Guo L; Du H
    Neurobiol Aging; 2021 Feb; 98():63-77. PubMed ID: 33254080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease.
    Lowes H; Kurzawa-Akanbi M; Pyle A; Hudson G
    Sci Rep; 2020 Sep; 10(1):15253. PubMed ID: 32943697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circulating cell-free mitochondrial DNA levels in Parkinson's disease are influenced by treatment.
    Lowes H; Pyle A; Santibanez-Koref M; Hudson G
    Mol Neurodegener; 2020 Feb; 15(1):10. PubMed ID: 32070373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer's disease.
    Yoo SM; Park J; Kim SH; Jung YK
    BMB Rep; 2020 Jan; 53(1):35-46. PubMed ID: 31818363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders.
    Chamera K; Trojan E; Szuster-Głuszczak M; Basta-Kaim A
    Curr Neuropharmacol; 2020; 18(5):408-430. PubMed ID: 31729301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sensing of mitochondrial DAMPs by non-immune cells.
    Rodríguez-Nuevo A; Zorzano A
    Cell Stress; 2019 May; 3(6):195-207. PubMed ID: 31225514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy.
    Thangaraj A; Periyasamy P; Liao K; Bendi VS; Callen S; Pendyala G; Buch S
    Autophagy; 2018; 14(9):1596-1619. PubMed ID: 29966509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Microbiome-Mitochondria Dance in Prodromal Parkinson's Disease.
    Cardoso SM; Empadinhas N
    Front Physiol; 2018; 9():471. PubMed ID: 29867531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular and phenotypic biomarkers of aging.
    Xia X; Chen W; McDermott J; Han JJ
    F1000Res; 2017; 6():860. PubMed ID: 28663789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.