These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 27563027)
1. Prediction of nucleosome positioning by the incorporation of frequencies and distributions of three different nucleotide segment lengths into a general pseudo k-tuple nucleotide composition. Awazu A Bioinformatics; 2017 Jan; 33(1):42-48. PubMed ID: 27563027 [TBL] [Abstract][Full Text] [Related]
2. LeNup: learning nucleosome positioning from DNA sequences with improved convolutional neural networks. Zhang J; Peng W; Wang L Bioinformatics; 2018 May; 34(10):1705-1712. PubMed ID: 29329398 [TBL] [Abstract][Full Text] [Related]
3. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871 [TBL] [Abstract][Full Text] [Related]
4. An analysis and prediction of nucleosome positioning based on information content. Xing YQ; Liu GQ; Zhao XJ; Cai L Chromosome Res; 2013 Mar; 21(1):63-74. PubMed ID: 23435498 [TBL] [Abstract][Full Text] [Related]
5. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. Jia C; Yang Q; Zou Q J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692 [TBL] [Abstract][Full Text] [Related]
6. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition. Tahir M; Hayat M; Khan SA Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426 [TBL] [Abstract][Full Text] [Related]
7. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches. De Santis P; Morosetti S; Scipioni A J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931 [TBL] [Abstract][Full Text] [Related]
8. A deformation energy-based model for predicting nucleosome dyads and occupancy. Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067 [TBL] [Abstract][Full Text] [Related]
9. ZCMM: A Novel Method Using Z-Curve Theory- Based and Position Weight Matrix for Predicting Nucleosome Positioning. Cui Y; Xu Z; Li J Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31569414 [TBL] [Abstract][Full Text] [Related]
10. Using deformation energy to analyze nucleosome positioning in genomes. Chen W; Feng P; Ding H; Lin H; Chou KC Genomics; 2016 Mar; 107(2-3):69-75. PubMed ID: 26724497 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary analysis of nucleosome positioning sequences based on New Symmetric Relative Entropy. Meng H; Li H; Zheng Y; Yang Z; Jia Y; Bo S Genomics; 2018 May; 110(3):154-161. PubMed ID: 28917635 [TBL] [Abstract][Full Text] [Related]
12. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis. Zhao X; Pei Z; Liu J; Qin S; Cai L Chromosome Res; 2010 Nov; 18(7):777-85. PubMed ID: 20953693 [TBL] [Abstract][Full Text] [Related]
13. Three sequence rules for chromatin. Cohanim AB; Kashi Y; Trifonov EN J Biomol Struct Dyn; 2006 Apr; 23(5):559-66. PubMed ID: 16494506 [TBL] [Abstract][Full Text] [Related]
14. A comparative evaluation on prediction methods of nucleosome positioning. Liu H; Zhang R; Xiong W; Guan J; Zhuang Z; Zhou S Brief Bioinform; 2014 Nov; 15(6):1014-27. PubMed ID: 24023366 [TBL] [Abstract][Full Text] [Related]
15. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens. Reynolds SM; Bilmes JA; Noble WS PLoS Comput Biol; 2010 Jul; 6(7):e1000834. PubMed ID: 20628623 [TBL] [Abstract][Full Text] [Related]
16. DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network. Zhou Y; Wu T; Jiang Y; Li Y; Li K; Quan L; Lyu Q Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360220 [TBL] [Abstract][Full Text] [Related]
17. Nucleosome positioning based on the sequence word composition. Yi XF; He ZS; Chou KC; Kong XY Protein Pept Lett; 2012 Jan; 19(1):79-90. PubMed ID: 21919856 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide DNA sequence polymorphisms facilitate nucleosome positioning in yeast. Dai Z; Dai X; Xiang Q Bioinformatics; 2011 Jul; 27(13):1758-64. PubMed ID: 21551148 [TBL] [Abstract][Full Text] [Related]
19. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. Field Y; Kaplan N; Fondufe-Mittendorf Y; Moore IK; Sharon E; Lubling Y; Widom J; Segal E PLoS Comput Biol; 2008 Nov; 4(11):e1000216. PubMed ID: 18989395 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. Han GS; Li Q; Li Y BMC Bioinformatics; 2021 Jun; 22(Suppl 6):129. PubMed ID: 34078256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]