BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27563029)

  • 1. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell-ECM interactions.
    Yoon J; Kim J; Jeong HE; Sudo R; Park MJ; Chung S
    Biofabrication; 2016 Aug; 8(3):035014. PubMed ID: 27563029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes.
    Yamada M; Hori A; Sugaya S; Yajima Y; Utoh R; Yamato M; Seki M
    Lab Chip; 2015 Oct; 15(19):3941-51. PubMed ID: 26308935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.
    Cassereau L; Miroshnikova YA; Ou G; Lakins J; Weaver VM
    J Biotechnol; 2015 Jan; 193():66-9. PubMed ID: 25435379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to producing uniform 3-D tumor spheroid constructs using ultrasound treatment.
    Karamikamkar S; Behzadfar E; Cheung KC
    Biomed Microdevices; 2018 Mar; 20(2):27. PubMed ID: 29511829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Cell-Matrix Interactions in 3D Collagen Hydrogel Culture Systems.
    Short AR; Czeisler C; Stocker B; Cole S; Otero JJ; Winter JO
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28221720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering controllable architecture in matrigel for 3D cell alignment.
    Jang JM; Tran SH; Na SC; Jeon NL
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2183-8. PubMed ID: 25585718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.
    Lee SH; Shim KY; Kim B; Sung JH
    Biotechnol Prog; 2017 May; 33(3):580-589. PubMed ID: 28247962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel culture device for the evaluation of three-dimensional extracellular matrix materials.
    Akhyari P; Ziegler H; Gwanmesia P; Barth M; Schilp S; Huelsmann J; Hoffmann S; Bosch J; Kögler G; Lichtenberg A
    J Tissue Eng Regen Med; 2014 Sep; 8(9):673-81. PubMed ID: 22761130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation.
    McCoy MG; Seo BR; Choi S; Fischbach C
    Acta Biomater; 2016 Oct; 44():200-8. PubMed ID: 27545811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-matrix interactions improve beta-cell survival and insulin secretion in three-dimensional culture.
    Weber LM; Hayda KN; Anseth KS
    Tissue Eng Part A; 2008 Dec; 14(12):1959-68. PubMed ID: 18724831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.
    Sung KE; Su G; Pehlke C; Trier SM; Eliceiri KW; Keely PJ; Friedl A; Beebe DJ
    Biomaterials; 2009 Sep; 30(27):4833-41. PubMed ID: 19540580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Three-Dimensional Structure of Adherent Gingival Fibroblasts and Spheroids via a Fibrous Protein-Based Hydrogel Cover.
    Kaufman G; Nunes L; Eftimiades A; Tutak W
    Cells Tissues Organs; 2016; 202(5-6):343-354. PubMed ID: 27578009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture.
    Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D
    Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-instructive starPEG-heparin-collagen composite matrices.
    Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C
    Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.
    Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH
    Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.