These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 27563488)
1. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Janowczyk A; Madabhushi A J Pathol Inform; 2016; 7():29. PubMed ID: 27563488 [TBL] [Abstract][Full Text] [Related]
2. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Salvi M; Acharya UR; Molinari F; Meiburger KM Comput Biol Med; 2021 Jan; 128():104129. PubMed ID: 33254082 [TBL] [Abstract][Full Text] [Related]
3. Deep learning in digital pathology image analysis: a survey. Deng S; Zhang X; Yan W; Chang EI; Fan Y; Lai M; Xu Y Front Med; 2020 Aug; 14(4):470-487. PubMed ID: 32728875 [TBL] [Abstract][Full Text] [Related]
4. Deep computational pathology in breast cancer. Duggento A; Conti A; Mauriello A; Guerrisi M; Toschi N Semin Cancer Biol; 2021 Jul; 72():226-237. PubMed ID: 32818626 [TBL] [Abstract][Full Text] [Related]
5. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images. Janowczyk A; Doyle S; Gilmore H; Madabhushi A Comput Methods Biomech Biomed Eng Imaging Vis; 2018; 6(3):270-276. PubMed ID: 29732269 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis. Chen Y; Janowczyk A; Madabhushi A JCO Clin Cancer Inform; 2020 Mar; 4():221-233. PubMed ID: 32155093 [TBL] [Abstract][Full Text] [Related]
7. A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image. Wen S; Kurc TM; Gao Y; Zhao T; Saltz JH; Zhu W J Pathol Inform; 2017; 8():38. PubMed ID: 28966837 [TBL] [Abstract][Full Text] [Related]
8. Image analysis and machine learning in digital pathology: Challenges and opportunities. Madabhushi A; Lee G Med Image Anal; 2016 Oct; 33():170-175. PubMed ID: 27423409 [TBL] [Abstract][Full Text] [Related]
9. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading. Jiménez G; Racoceanu D Front Bioeng Biotechnol; 2019; 7():145. PubMed ID: 31281813 [TBL] [Abstract][Full Text] [Related]
11. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Sebai M; Wang X; Wang T Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109 [TBL] [Abstract][Full Text] [Related]
12. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
13. Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation. Boumaraf S; Liu X; Wan Y; Zheng Z; Ferkous C; Ma X; Li Z; Bardou D Diagnostics (Basel); 2021 Mar; 11(3):. PubMed ID: 33809611 [TBL] [Abstract][Full Text] [Related]
16. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup. Liu Y; Zhang M; Zhong Z; Zeng X Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788 [TBL] [Abstract][Full Text] [Related]
17. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy. Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584 [TBL] [Abstract][Full Text] [Related]
18. Weakly supervised mitosis detection in breast histopathology images using concentric loss. Li C; Wang X; Liu W; Latecki LJ; Wang B; Huang J Med Image Anal; 2019 Apr; 53():165-178. PubMed ID: 30798116 [TBL] [Abstract][Full Text] [Related]
19. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Jayapandian CP; Chen Y; Janowczyk AR; Palmer MB; Cassol CA; Sekulic M; Hodgin JB; Zee J; Hewitt SM; O'Toole J; Toro P; Sedor JR; Barisoni L; Madabhushi A; Kidney Int; 2021 Jan; 99(1):86-101. PubMed ID: 32835732 [TBL] [Abstract][Full Text] [Related]
20. Object recognition in medical images via anatomy-guided deep learning. Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]