These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27563675)
1. ChSte7 Is Required for Vegetative Growth and Various Plant Infection Processes in Colletotrichum higginsianum. Yuan Q; Chen M; Yan Y; Gu Q; Huang J; Zheng L Biomed Res Int; 2016; 2016():7496569. PubMed ID: 27563675 [TBL] [Abstract][Full Text] [Related]
2. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Liu L; Zhao D; Zheng L; Hsiang T; Wei Y; Fu Y; Huang J Microb Pathog; 2013 Nov; 64():6-17. PubMed ID: 23806215 [TBL] [Abstract][Full Text] [Related]
3. The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Zhu W; Xu X; Peng F; Yan DZ; Zhang S; Xu R; Wu J; Li X; Wei W; Chen W Plant Sci; 2019 Jun; 283():1-10. PubMed ID: 31128679 [TBL] [Abstract][Full Text] [Related]
4. Multifaceted Roles of the Ras Guanine-Nucleotide Exchange Factor ChRgf in Development, Pathogenesis, and Stress Responses of Colletotrichum higginsianum. Gu Q; Chen M; Huang J; Wei Y; Hsiang T; Zheng L Phytopathology; 2017 Apr; 107(4):433-443. PubMed ID: 28026997 [TBL] [Abstract][Full Text] [Related]
5. ChMob2 binds to ChCbk1 and promotes virulence and conidiation of the fungal pathogen Colletotrichum higginsianum. Schmidpeter J; Dahl M; Hofmann J; Koch C BMC Microbiol; 2017 Jan; 17(1):22. PubMed ID: 28103800 [TBL] [Abstract][Full Text] [Related]
6. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Albarouki E; Deising HB Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025 [TBL] [Abstract][Full Text] [Related]
7. Yan Y; Tang J; Yuan Q; Gu Q; Liu H; Huang J; Hsiang T; Zheng L Front Microbiol; 2020; 11():763. PubMed ID: 32457707 [TBL] [Abstract][Full Text] [Related]
8. Dual Transcriptome Analysis Reveals That Zhu Y; Duan L; Zhu C; Wang L; He Z; Yang M; Zhou E Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901806 [TBL] [Abstract][Full Text] [Related]
9. Mitogen-activated protein kinase cascade CgSte50-Ste11-Ste7-Mk1 regulates infection-related morphogenesis in the poplar anthracnose fungus Colletotrichum gloeosporioides. Wang X; Lu D; Tian C Microbiol Res; 2021 Jul; 248():126748. PubMed ID: 33752111 [TBL] [Abstract][Full Text] [Related]
10. A Novel Hexose Transporter ChHxt6 Is Required for Hexose Uptake and Virulence in Yuan Q; Yan Y; Sohail MA; Liu H; Huang J; Hsiang T; Zheng L Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073109 [No Abstract] [Full Text] [Related]
11. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Narusaka Y; Narusaka M; Park P; Kubo Y; Hirayama T; Seki M; Shiraishi T; Ishida J; Nakashima M; Enju A; Sakurai T; Satou M; Kobayashi M; Shinozaki K Mol Plant Microbe Interact; 2004 Jul; 17(7):749-62. PubMed ID: 15242169 [TBL] [Abstract][Full Text] [Related]
13. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. Korn M; Schmidpeter J; Dahl M; Müller S; Voll LM; Koch C PLoS One; 2015; 10(5):e0125960. PubMed ID: 25992547 [TBL] [Abstract][Full Text] [Related]
14. Acetyl-coenzyme A synthetase gene ChAcs1 is essential for lipid metabolism, carbon utilization and virulence of the hemibiotrophic fungus Colletotrichum higginsianum. Gu Q; Yuan Q; Zhao D; Huang J; Hsiang T; Wei Y; Zheng L Mol Plant Pathol; 2019 Jan; 20(1):107-123. PubMed ID: 30136442 [TBL] [Abstract][Full Text] [Related]
15. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Huser A; Takahara H; Schmalenbach W; O'Connell R Mol Plant Microbe Interact; 2009 Feb; 22(2):143-56. PubMed ID: 19132867 [TBL] [Abstract][Full Text] [Related]
16. The dsRNA mycovirus ChNRV1 causes mild hypervirulence in the fungal phytopathogen Colletotrichum higginsianum. Olivé M; Campo S Arch Microbiol; 2021 Jan; 203(1):241-249. PubMed ID: 32914229 [TBL] [Abstract][Full Text] [Related]
17. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Kojima K; Kikuchi T; Takano Y; Oshiro E; Okuno T Mol Plant Microbe Interact; 2002 Dec; 15(12):1268-76. PubMed ID: 12481999 [TBL] [Abstract][Full Text] [Related]
18. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum. Dallery JF; Adelin É; Le Goff G; Pigné S; Auger A; Ouazzani J; O'Connell RJ Mol Plant Pathol; 2019 Jun; 20(6):831-842. PubMed ID: 30924614 [TBL] [Abstract][Full Text] [Related]
19. Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. Voll LM; Zell MB; Engelsdorf T; Saur A; Wheeler MG; Drincovich MF; Weber AP; Maurino VG New Phytol; 2012 Jul; 195(1):189-202. PubMed ID: 22497207 [TBL] [Abstract][Full Text] [Related]
20. Plant Inoculation with the Fungal Leaf Pathogen Colletotrichum higginsianum. Hiruma K; Saijo Y Methods Mol Biol; 2016; 1398():313-8. PubMed ID: 26867633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]