These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 27563899)
1. A New Approach of Oil Spill Detection Using Time-Resolved LIF Combined with Parallel Factors Analysis for Laser Remote Sensing. Liu D; Luan X; Guo J; Cui T; An J; Zheng R Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563899 [TBL] [Abstract][Full Text] [Related]
2. [Discrimination of Crude Oil Samples Using Laser-Induced Time-Resolved Fluorescence Spectroscopy]. Han XS; Liu DQ; Luan XN; Guo JJ; Liu YX; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):445-8. PubMed ID: 27209747 [TBL] [Abstract][Full Text] [Related]
3. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Christensen JH; Hansen AB; Mortensen J; Andersen O Anal Chem; 2005 Apr; 77(7):2210-7. PubMed ID: 15801755 [TBL] [Abstract][Full Text] [Related]
4. [Characterization of Time-Resolved Laser-Induced Fluorescence from Crude Oil Samples]. Liu DQ; Luan XN; Han XS; Guo JJ; An JB; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1582-6. PubMed ID: 26601371 [TBL] [Abstract][Full Text] [Related]
5. Experimental Analysis on the Optimal Excitation Wavelength for Fine-Grained Identification of Refined Oil Pollutants on Water Surface Based on Laser-Induced Fluorescence. Xie M; Jia Y; Li Y; Cai X; Cao K J Fluoresc; 2022 Jan; 32(1):257-265. PubMed ID: 34767127 [TBL] [Abstract][Full Text] [Related]
6. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill. Mendoza WG; Riemer DD; Zika RG Environ Sci Process Impacts; 2013 May; 15(5):1017-30. PubMed ID: 23546220 [TBL] [Abstract][Full Text] [Related]
7. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Jha MN; Levy J; Gao Y Sensors (Basel); 2008 Jan; 8(1):236-255. PubMed ID: 27879706 [TBL] [Abstract][Full Text] [Related]
8. [Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network]. Liu QQ; Wang CY; Shi XF; Li WD; Luan XN; Hou SL; Zhang JL; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Apr; 32(4):1012-5. PubMed ID: 22715774 [TBL] [Abstract][Full Text] [Related]
9. [Application of fluorescence spectra and parallel factor analysis in the classification of edible vegetable oils]. Wu XJ; Pan Z; Zhao YP; Liu HL; Zheng LJ Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2137-42. PubMed ID: 25474950 [TBL] [Abstract][Full Text] [Related]
10. A Review of Oil Spill Remote Sensing. Fingas M; Brown CE Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29301212 [TBL] [Abstract][Full Text] [Related]
11. Review of oil spill remote sensing. Fingas M; Brown C Mar Pollut Bull; 2014 Jun; 83(1):9-23. PubMed ID: 24759508 [TBL] [Abstract][Full Text] [Related]
12. [Fingerprint discrimination technique of spill oil based on concentration auxiliary parameter fluorescence spectra]. Wang CY; Li WD; Luan XN; Zhang DY; Zhang JL; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2700-5. PubMed ID: 21137403 [TBL] [Abstract][Full Text] [Related]
13. Changing Dynamics of Dissolved Organic Matter Fluorescence in the Northern Gulf of Mexico Following the Deepwater Horizon Oil Spill. D'Sa EJ; Overton EB; Lohrenz SE; Maiti K; Turner RE; Freeman A Environ Sci Technol; 2016 May; 50(10):4940-50. PubMed ID: 27088567 [TBL] [Abstract][Full Text] [Related]
14. Study on temporary resolution for offshore marine oil spill emergencies based on remote sensing system. Lan GX; Dong KX; Lin JJ J Environ Biol; 2016 Sep; 37(5 Spec No):1177-1180. PubMed ID: 29989750 [TBL] [Abstract][Full Text] [Related]
15. A damage assessment model of oil spill accident combining historical data and satellite remote sensing information: a case study in Penglai 19-3 oil spill accident of China. Wei L; Hu Z; Dong L; Zhao W Mar Pollut Bull; 2015 Feb; 91(1):258-71. PubMed ID: 25530016 [TBL] [Abstract][Full Text] [Related]
16. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing. Svejkovsky J; Hess M; Muskat J; Nedwed TJ; McCall J; Garcia O Mar Pollut Bull; 2016 Sep; 110(1):162-176. PubMed ID: 27389454 [TBL] [Abstract][Full Text] [Related]
17. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy. Wang C; Shi X; Li W; Wang L; Zhang J; Yang C; Wang Z Mar Pollut Bull; 2016 Mar; 104(1-2):322-8. PubMed ID: 26795119 [TBL] [Abstract][Full Text] [Related]
18. Review of the development of laser fluorosensors for oil spill application. Brown CE; Fingas MF Mar Pollut Bull; 2003; 47(9-12):477-84. PubMed ID: 12899891 [TBL] [Abstract][Full Text] [Related]
19. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Sun S; Hu C; Tunnell JW Mar Pollut Bull; 2015 Dec; 101(2):632-41. PubMed ID: 26507512 [TBL] [Abstract][Full Text] [Related]
20. Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy. Fortes FJ; Ctvrtnícková T; Mateo MP; Cabalín LM; Nicolas G; Laserna JJ Anal Chim Acta; 2010 Dec; 683(1):52-7. PubMed ID: 21094380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]