These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27563899)

  • 21. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
    De Padova D; Mossa M; Adamo M; De Carolis G; Pasquariello G
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5530-5543. PubMed ID: 28028707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitation-emission matrix spectroscopy and parallel factor analysis for micro-content petroleum pollutant.
    Zhi-Kun C; Wang Y; Wang FB; Wang YT; Zhou Yan
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2561-7. PubMed ID: 25532364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multispectral LIF-Based Standoff Detection System for the Classification of CBE Hazards by Spectral and Temporal Features.
    Fellner L; Kraus M; Gebert F; Walter A; Duschek F
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.
    Singha S; Vespe M; Trieschmann O
    Mar Pollut Bull; 2013 Aug; 73(1):199-209. PubMed ID: 23790462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence Hyperspectral Imaging of Oil Samples and Its Quantitative Applications in Component Analysis and Thickness Estimation.
    Jiang W; Li J; Yao X; Forsberg E; He S
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study on Refined Oil Identification and Measurement Based on the Extension Neural Network Pattern Recognition].
    Zhang LG; Chen ZK; Wang L; Cao LF; Yan B; Wang YT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2901-5. PubMed ID: 30084623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broadband acoustic backscatter from crude oil under laboratory-grown sea ice.
    Bassett C; Lavery AC; Maksym T; Wilkinson JP
    J Acoust Soc Am; 2016 Oct; 140(4):2274. PubMed ID: 27794337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Oil spill identification using partial surface fitting method based on concentration-synchronous-matrix-fluorescence spectra].
    Wang CY; Shi XF; Li WD; Zhang JL
    Huan Jing Ke Xue; 2014 Jan; 35(1):202-7. PubMed ID: 24720205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis.
    Mirnaghi FS; Soucy N; Hollebone BP; Brown CE
    Chemosphere; 2018 Oct; 208():185-195. PubMed ID: 29864709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a field testing protocol for identifying Deepwater Horizon oil spill residues trapped near Gulf of Mexico beaches.
    Han Y; Clement TP
    PLoS One; 2018; 13(1):e0190508. PubMed ID: 29329313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Study on application of multi-wavelength LED array induced fluorescence spectrum in multicomponent analysis].
    Sima WC; Zhang YJ; Wang ZG; Li HB; Zhao NJ; Lu ZX; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):165-8. PubMed ID: 18422144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multivariate curve resolution based chromatographic peak alignment combined with parallel factor analysis to exploit second-order advantage in complex chromatographic measurements.
    Parastar H; Akvan N
    Anal Chim Acta; 2014 Mar; 816():18-27. PubMed ID: 24580851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification.
    Durán Merás I; Domínguez Manzano J; Airado Rodríguez D; Muñoz de la Peña A
    Talanta; 2018 Feb; 178():751-762. PubMed ID: 29136891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of oil spills in the environment using parallel factor multiway analysis.
    Gaganis V; Pasadakis N
    Anal Chim Acta; 2006 Jul; 573-574():328-32. PubMed ID: 17723541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved laser fluorosensors: a laboratory study of their potential in the remote characterization of oil.
    Rayner DM; Szabo AG
    Appl Opt; 1978 May; 17(10):1624-30. PubMed ID: 20198034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.
    Li Y; Cui C; Liu Z; Liu B; Xu J; Zhu X; Hou Y
    Arch Environ Contam Toxicol; 2017 Jul; 73(1):154-169. PubMed ID: 28695250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion.
    Zhang D; Ding A; Cui S; Hu C; Thornton SF; Dou J; Sun Y; Huang WE
    Water Res; 2013 Mar; 47(3):1191-200. PubMed ID: 23269319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser radar for remote detection of oil spills.
    Sato T; Suzuki Y; Kashiwagi H; Nanjo M; Kakui Y
    Appl Opt; 1978 Dec; 17(23):3798-803. PubMed ID: 20208611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The study of fluorescence spectrum using ultraviolet-laser for several typical oil pollutants].
    Feng WW; Wang R; Sun PY; Gao ZH; Chen LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 May; 31(5):1168-70. PubMed ID: 21800555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mineralogy and astrobiology detection using laser remote sensing instrument.
    Abedin MN; Bradley AT; Sharma SK; Misra AK; Lucey PG; McKay CP; Ismail S; Sandford SP
    Appl Opt; 2015 Sep; 54(25):7598-611. PubMed ID: 26368883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.