BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27564095)

  • 21. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing.
    Peng SC; Tomblin JB; Turner CW
    Ear Hear; 2008 Jun; 29(3):336-51. PubMed ID: 18344873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.
    Li T; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):498-502. PubMed ID: 21696330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving speech-in-noise recognition for children with hearing loss: potential effects of language abilities, binaural summation, and head shadow.
    Nittrouer S; Caldwell-Tarr A; Tarr E; Lowenstein JH; Rice C; Moberly AC
    Int J Audiol; 2013 Aug; 52(8):513-25. PubMed ID: 23834373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mandarin lexical tone recognition in bimodal cochlear implant users.
    Zhou Q; Bi J; Song H; Gu X; Liu B
    Int J Audiol; 2020 Jul; 59(7):548-555. PubMed ID: 32302240
    [No Abstract]   [Full Text] [Related]  

  • 28. Mandarin Tone and Vowel Recognition in Cochlear Implant Users: Effects of Talker Variability and Bimodal Hearing.
    Chang YP; Chang RY; Lin CY; Luo X
    Ear Hear; 2016; 37(3):271-81. PubMed ID: 26752089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.
    De Ceulaer G; Pascoal D; Vanpoucke F; Govaerts PJ
    Int J Audiol; 2017 Nov; 56(11):837-843. PubMed ID: 28695749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lexical tone recognition in multi-talker babbles and steady-state noise by Mandarin-speaking children with unilateral cochlear implants or bimodal hearing.
    Meng C; Guo Q; Lyu J; Jaquish A; Chen X; Xu L
    Int J Pediatr Otorhinolaryngol; 2024 Jun; 182():112020. PubMed ID: 38964177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system.
    Holden LK; Reeder RM; Firszt JB; Finley CC
    Int J Audiol; 2011 Apr; 50(4):255-69. PubMed ID: 21275500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between tone perception and production in prelingually deafened children with cochlear implants.
    Zhou N; Huang J; Chen X; Xu L
    Otol Neurotol; 2013 Apr; 34(3):499-506. PubMed ID: 23442566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Availability of binaural cues for pediatric bilateral cochlear implant recipients.
    Sheffield SW; Haynes DS; Wanna GB; Labadie RF; Gifford RH
    J Am Acad Audiol; 2015 Mar; 26(3):289-98. PubMed ID: 25751696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of age and hearing mechanism on spectral resolution in normal hearing and cochlear-implanted listeners.
    Horn DL; Dudley DJ; Dedhia K; Nie K; Drennan WR; Won JH; Rubinstein JT; Werner LA
    J Acoust Soc Am; 2017 Jan; 141(1):613. PubMed ID: 28147578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of speech recognition abilities in quiet and in noise: a comparison between self-administered home testing and testing in the clinic for adult cochlear implant users.
    de Graaff F; Huysmans E; Merkus P; Theo Goverts S; Smits C
    Int J Audiol; 2018 Nov; 57(11):872-880. PubMed ID: 30261772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of adaptive dynamic range optimization in adverse listening conditions for cochlear implants.
    Ali H; Hazrati O; Tobey EA; Hansen JH
    J Acoust Soc Am; 2014 Sep; 136(3):EL242. PubMed ID: 25190428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB; Moore AN
    Trends Hear; 2018; 22():2331216518808962. PubMed ID: 30375282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speech rate, rate-matching, and intelligibility in early-implanted cochlear implant users.
    Freeman V; Pisoni DB
    J Acoust Soc Am; 2017 Aug; 142(2):1043. PubMed ID: 28863583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.